mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
60 lines
2.1 KiB
Python
60 lines
2.1 KiB
Python
![]() |
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
||
|
from opencompass.openicl.icl_retriever import ZeroRetriever
|
||
|
from opencompass.openicl.icl_inferencer import GenInferencer
|
||
|
from opencompass.datasets.NPHardEval import (
|
||
|
hard_GCP_Dataset, hard_GCP_Evaluator,
|
||
|
hard_TSP_Dataset, hard_TSP_Evaluator,
|
||
|
hard_MSP_Dataset, hard_MSP_Evaluator,
|
||
|
cmp_GCP_D_Dataset, cmp_GCP_D_Evaluator,
|
||
|
cmp_TSP_D_Dataset, cmp_TSP_D_Evaluator,
|
||
|
cmp_KSP_Dataset, cmp_KSP_Evaluator,
|
||
|
p_BSP_Dataset, p_BSP_Evaluator,
|
||
|
p_EDP_Dataset, p_EDP_Evaluator,
|
||
|
p_SPP_Dataset, p_SPP_Evaluator,
|
||
|
)
|
||
|
|
||
|
NPHardEval_tasks = [
|
||
|
["hard_GCP", "GCP", hard_GCP_Dataset, hard_GCP_Evaluator],
|
||
|
["hard_TSP", "TSP", hard_TSP_Dataset, hard_TSP_Evaluator],
|
||
|
["hard_MSP", "MSP", hard_MSP_Dataset, hard_MSP_Evaluator],
|
||
|
["cmp_GCP_D", "GCP_Decision", cmp_GCP_D_Dataset, cmp_GCP_D_Evaluator],
|
||
|
["cmp_TSP_D", "TSP_Decision", cmp_TSP_D_Dataset, cmp_TSP_D_Evaluator],
|
||
|
["cmp_KSP", "KSP", cmp_KSP_Dataset, cmp_KSP_Evaluator],
|
||
|
["p_BSP", "BSP", p_BSP_Dataset, p_BSP_Evaluator],
|
||
|
["p_EDP", "EDP", p_EDP_Dataset, p_EDP_Evaluator],
|
||
|
["p_SPP", "SPP", p_SPP_Dataset, p_SPP_Evaluator],
|
||
|
]
|
||
|
|
||
|
NPHardEval_datasets = []
|
||
|
for name, path_name, dataset, evaluator in NPHardEval_tasks:
|
||
|
NPHardEval_reader_cfg = dict(input_columns=["prompt", "level"], output_column="q")
|
||
|
|
||
|
NPHardEval_infer_cfg = dict(
|
||
|
ice_template=dict(
|
||
|
type=PromptTemplate,
|
||
|
template=dict(
|
||
|
begin="</E>",
|
||
|
round=[
|
||
|
dict(role="HUMAN", prompt="</E>{prompt}"),
|
||
|
dict(role="BOT", prompt=""),
|
||
|
],
|
||
|
),
|
||
|
ice_token="</E>",
|
||
|
),
|
||
|
retriever=dict(type=ZeroRetriever),
|
||
|
inferencer=dict(type=GenInferencer),
|
||
|
)
|
||
|
|
||
|
NPHardEval_eval_cfg = dict(evaluator=dict(type=evaluator), pred_role="BOT")
|
||
|
|
||
|
NPHardEval_datasets.append(
|
||
|
dict(
|
||
|
type=dataset,
|
||
|
abbr=name,
|
||
|
path=f"./data/NPHardEval/{path_name}/",
|
||
|
reader_cfg=NPHardEval_reader_cfg,
|
||
|
infer_cfg=NPHardEval_infer_cfg,
|
||
|
eval_cfg=NPHardEval_eval_cfg,
|
||
|
)
|
||
|
)
|