OpenCompass/configs/datasets/ChemBench/ChemBench_gen.py

78 lines
2.4 KiB
Python
Raw Normal View History

from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import FixKRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import ChemBenchDataset
from opencompass.utils.text_postprocessors import first_capital_postprocess
chembench_reader_cfg = dict(
input_columns=["input", "A", "B", "C", "D"],
output_column="target",
train_split='dev')
chembench_all_sets = [
'Name_Conversion',
'Property_Prediction',
'Mol2caption',
'Caption2mol',
'Product_Prediction',
'Retrosynthesis',
'Yield_Prediction',
'Temperature_Prediction',
'Solvent_Prediction'
]
chembench_datasets = []
for _name in chembench_all_sets:
# _hint = f'There is a single choice question about {_name.replace("_", " ")}. Answer the question by replying A, B, C or D.'
_hint = f'There is a single choice question about chemistry. Answer the question by replying A, B, C or D.'
chembench_infer_cfg = dict(
ice_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role="HUMAN",
prompt=
f"{_hint}\nQuestion: {{input}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\nAnswer: "
),
dict(role="BOT", prompt="{target}\n")
]),
),
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin="</E>",
round=[
dict(
role="HUMAN",
prompt=
f"{_hint}\nQuestion: {{input}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\nAnswer: "
),
],
),
ice_token="</E>",
),
retriever=dict(type=FixKRetriever, fix_id_list=[0, 1, 2, 3, 4]),
inferencer=dict(type=GenInferencer),
)
chembench_eval_cfg = dict(
evaluator=dict(type=AccEvaluator),
pred_postprocessor=dict(type=first_capital_postprocess))
chembench_datasets.append(
dict(
abbr=f"ChemBench_{_name}",
type=ChemBenchDataset,
path="./data/ChemBench/",
name=_name,
reader_cfg=chembench_reader_cfg,
infer_cfg=chembench_infer_cfg,
eval_cfg=chembench_eval_cfg,
))
del _name, _hint