mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
67 lines
2.0 KiB
Python
67 lines
2.0 KiB
Python
![]() |
from mmengine.config import read_base
|
||
|
from opencompass.models import ZhiPuV2AI
|
||
|
from opencompass.partitioners import NaivePartitioner
|
||
|
from opencompass.runners.local_api import LocalAPIRunner
|
||
|
from opencompass.tasks import OpenICLInferTask
|
||
|
|
||
|
with read_base():
|
||
|
# from .datasets.collections.chat_medium import datasets
|
||
|
from ..summarizers.medium import summarizer
|
||
|
from ..datasets.ceval.ceval_gen import ceval_datasets
|
||
|
|
||
|
datasets = [
|
||
|
*ceval_datasets,
|
||
|
]
|
||
|
|
||
|
# needs a special postprocessor for all
|
||
|
# except 'gsm8k' and 'strategyqa'
|
||
|
from opencompass.utils import general_eval_wrapper_postprocess
|
||
|
for _dataset in datasets:
|
||
|
if _dataset['abbr'] not in ['gsm8k', 'strategyqa']:
|
||
|
if hasattr(_dataset['eval_cfg'], 'pred_postprocessor'):
|
||
|
_dataset['eval_cfg']['pred_postprocessor']['postprocess'] = _dataset['eval_cfg']['pred_postprocessor']['type']
|
||
|
_dataset['eval_cfg']['pred_postprocessor']['type'] = general_eval_wrapper_postprocess
|
||
|
else:
|
||
|
_dataset['eval_cfg']['pred_postprocessor'] = {'type': general_eval_wrapper_postprocess}
|
||
|
|
||
|
|
||
|
api_meta_template = dict(
|
||
|
round=[
|
||
|
dict(role='HUMAN', api_role='HUMAN'),
|
||
|
dict(role='BOT', api_role='BOT', generate=True),
|
||
|
],
|
||
|
)
|
||
|
|
||
|
models = [
|
||
|
dict(
|
||
|
abbr='glm4_notools',
|
||
|
type=ZhiPuV2AI,
|
||
|
path='glm-4',
|
||
|
key='xxxxxx',
|
||
|
generation_kwargs={
|
||
|
'tools': [
|
||
|
{
|
||
|
'type': 'web_search',
|
||
|
'web_search': {
|
||
|
'enable': False # turn off the search
|
||
|
}
|
||
|
}
|
||
|
]
|
||
|
},
|
||
|
meta_template=api_meta_template,
|
||
|
query_per_second=1,
|
||
|
max_out_len=2048,
|
||
|
max_seq_len=2048,
|
||
|
batch_size=8)
|
||
|
]
|
||
|
|
||
|
infer = dict(
|
||
|
partitioner=dict(type=NaivePartitioner),
|
||
|
runner=dict(
|
||
|
type=LocalAPIRunner,
|
||
|
max_num_workers=2,
|
||
|
concurrent_users=2,
|
||
|
task=dict(type=OpenICLInferTask)),
|
||
|
)
|
||
|
|
||
|
work_dir = "outputs/api_zhipu_v2/"
|