OpenCompass/configs/datasets/wmt19/wmt19_gen.py

122 lines
4.1 KiB
Python
Raw Normal View History

2024-09-06 20:53:38 +08:00
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever, BM25Retriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import BleuEvaluator
from opencompass.datasets.wmt19 import WMT19TranslationDataset
LANG_CODE_TO_NAME = {
'cs': 'Czech',
'de': 'German',
'en': 'English',
'fi': 'Finnish',
'fr': 'French',
'gu': 'Gujarati',
'kk': 'Kazakh',
'lt': 'Lithuanian',
'ru': 'Russian',
'zh': 'Chinese'
}
wmt19_reader_cfg = dict(
input_columns=['input'],
output_column='target',
train_split='validation',
test_split='validation')
wmt19_infer_cfg_0shot = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(role='HUMAN', prompt='Translate the following {src_lang_name} text to {tgt_lang_name}:\n{{input}}\n'),
dict(role='BOT', prompt='Translation:\n')
]
)
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer)
)
wmt19_infer_cfg_5shot = dict(
ice_template=dict(
type=PromptTemplate,
template='Example:\n{src_lang_name}: {{input}}\n{tgt_lang_name}: {{target}}'
),
prompt_template=dict(
type=PromptTemplate,
template='</E>\nTranslate the following {src_lang_name} text to {tgt_lang_name}:\n{{input}}\nTranslation:\n',
ice_token='</E>',
),
retriever=dict(type=BM25Retriever, ice_num=5),
inferencer=dict(type=GenInferencer),
)
wmt19_eval_cfg = dict(
evaluator=dict(
type=BleuEvaluator
),
pred_role='BOT',
)
language_pairs = [
('cs', 'en'), ('de', 'en'), ('fi', 'en'), ('fr', 'de'),
('gu', 'en'), ('kk', 'en'), ('lt', 'en'), ('ru', 'en'), ('zh', 'en')
]
wmt19_datasets = []
for src_lang, tgt_lang in language_pairs:
src_lang_name = LANG_CODE_TO_NAME[src_lang]
tgt_lang_name = LANG_CODE_TO_NAME[tgt_lang]
wmt19_datasets.extend([
dict(
abbr=f'wmt19_{src_lang}-{tgt_lang}_0shot',
type=WMT19TranslationDataset,
path='/path/to/wmt19',
src_lang=src_lang,
tgt_lang=tgt_lang,
reader_cfg=wmt19_reader_cfg,
infer_cfg={
**wmt19_infer_cfg_0shot,
'prompt_template': {
**wmt19_infer_cfg_0shot['prompt_template'],
'template': {
**wmt19_infer_cfg_0shot['prompt_template']['template'],
'round': [
{
**wmt19_infer_cfg_0shot['prompt_template']['template']['round'][0],
'prompt': wmt19_infer_cfg_0shot['prompt_template']['template']['round'][0]['prompt'].format(
src_lang_name=src_lang_name, tgt_lang_name=tgt_lang_name
)
},
wmt19_infer_cfg_0shot['prompt_template']['template']['round'][1]
]
}
}
},
eval_cfg=wmt19_eval_cfg),
dict(
abbr=f'wmt19_{src_lang}-{tgt_lang}_5shot',
type=WMT19TranslationDataset,
path='/path/to/wmt19',
src_lang=src_lang,
tgt_lang=tgt_lang,
reader_cfg=wmt19_reader_cfg,
infer_cfg={
**wmt19_infer_cfg_5shot,
'ice_template': {
**wmt19_infer_cfg_5shot['ice_template'],
'template': wmt19_infer_cfg_5shot['ice_template']['template'].format(
src_lang_name=src_lang_name, tgt_lang_name=tgt_lang_name
)
},
'prompt_template': {
**wmt19_infer_cfg_5shot['prompt_template'],
'template': wmt19_infer_cfg_5shot['prompt_template']['template'].format(
src_lang_name=src_lang_name, tgt_lang_name=tgt_lang_name
)
}
},
eval_cfg=wmt19_eval_cfg),
])