mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
268 lines
9.7 KiB
Python
268 lines
9.7 KiB
Python
![]() |
# flake8: noqa: E501
|
||
|
|
||
|
import difflib
|
||
|
import os
|
||
|
import re
|
||
|
import tempfile
|
||
|
import time
|
||
|
from typing import Any, Dict, List, Optional, Tuple, Union
|
||
|
|
||
|
from datasets import Dataset
|
||
|
from gradio_client import Client
|
||
|
|
||
|
from opencompass.openicl.icl_evaluator import BaseEvaluator
|
||
|
from opencompass.registry import ICL_EVALUATORS
|
||
|
|
||
|
|
||
|
@ICL_EVALUATORS.register_module()
|
||
|
class CodeEvaluator(BaseEvaluator):
|
||
|
"""Evaluator for code generation tasks.
|
||
|
|
||
|
This evaluator sends code to a remote evaluation service to test its
|
||
|
functionality against provided test cases. It handles code extraction,
|
||
|
processing, and result analysis.
|
||
|
"""
|
||
|
|
||
|
def __init__(self,
|
||
|
language: str,
|
||
|
ip_address: str = 'localhost',
|
||
|
retry: int = 3) -> None:
|
||
|
"""Initialize the CodeEvaluator.
|
||
|
|
||
|
Args:
|
||
|
language (str): Programming language of the code to evaluate.
|
||
|
ip_address (str, optional): IP address of the evaluation service. Defaults to 'localhost'.
|
||
|
retry (int, optional): Number of retry attempts for failed connections. Defaults to 3.
|
||
|
"""
|
||
|
self.language = language
|
||
|
self.retry = retry
|
||
|
self.client = Client(ip_address)
|
||
|
super().__init__()
|
||
|
|
||
|
def _extract_code(self, text: str) -> str:
|
||
|
"""Extract code from markdown-formatted text.
|
||
|
|
||
|
Args:
|
||
|
text (str): Text that may contain code blocks in markdown format.
|
||
|
|
||
|
Returns:
|
||
|
str: Extracted code from the last code block, or the original text if no code blocks found.
|
||
|
"""
|
||
|
blocks = re.findall(r'```\w*\n(.*?)```', text, re.DOTALL)
|
||
|
if len(blocks) >= 1:
|
||
|
text = blocks[0]
|
||
|
return text
|
||
|
|
||
|
def _code_eval_service(
|
||
|
self, input_data: Union[Dict, List,
|
||
|
str]) -> Tuple[bool, Union[Dict, List, Any]]:
|
||
|
"""Send code to the remote evaluation service using gradio_client and
|
||
|
get the results.
|
||
|
|
||
|
Args:
|
||
|
input_data: Can be one of:
|
||
|
- dict: Dictionary containing code information for a single test case
|
||
|
- list: List of dictionaries for batch evaluation
|
||
|
- str: File path to code file
|
||
|
|
||
|
Returns:
|
||
|
tuple: (succeed, output)
|
||
|
- succeed (bool): Whether the request was successful
|
||
|
- output (dict/list/str): Evaluation results or error message
|
||
|
"""
|
||
|
try:
|
||
|
temp_file_path = None
|
||
|
# Handle file path input
|
||
|
if isinstance(input_data, str):
|
||
|
with tempfile.NamedTemporaryFile(suffix=f'.{self.language}',
|
||
|
delete=False) as temp_file:
|
||
|
temp_file_path = temp_file.name
|
||
|
with open(input_data, 'r') as src_file:
|
||
|
content = src_file.read()
|
||
|
temp_file.write(content.encode())
|
||
|
input_data = temp_file_path
|
||
|
|
||
|
# Send to evaluation service
|
||
|
result = self.client.predict(input_data, api_name='/evaluate')
|
||
|
|
||
|
# Process the result
|
||
|
if isinstance(result, (dict, list)):
|
||
|
return True, result
|
||
|
else:
|
||
|
# Try to parse the result as JSON if it's a string
|
||
|
try:
|
||
|
import json
|
||
|
parsed_result = json.loads(result)
|
||
|
return True, parsed_result
|
||
|
except: # noqa: E722
|
||
|
return True, {'status': 'unknown', 'raw_result': result}
|
||
|
|
||
|
except Exception as e:
|
||
|
return False, str(e)
|
||
|
finally:
|
||
|
# Clean up temporary file if it was created
|
||
|
if temp_file_path and os.path.exists(temp_file_path):
|
||
|
try:
|
||
|
os.unlink(temp_file_path)
|
||
|
except: # noqa: E722
|
||
|
pass
|
||
|
|
||
|
def _remove_prefix(self,
|
||
|
prompt: str,
|
||
|
completion: str,
|
||
|
threshold: float = 0.95) -> str:
|
||
|
"""Determine the truncation point in the completion based on the last
|
||
|
line of the prompt, remove all content before that line in the
|
||
|
completion, and return the completion string after removing the prefix.
|
||
|
This is done to convert chatbot-style inference mode to completion
|
||
|
mode.
|
||
|
|
||
|
Args:
|
||
|
prompt (str): The prompt text.
|
||
|
completion (str): The completion text.
|
||
|
threshold (float): Line similarity threshold.
|
||
|
|
||
|
Returns:
|
||
|
str: The completion string after removing the prefix.
|
||
|
"""
|
||
|
prompt_lines = prompt.splitlines()
|
||
|
completion_lines = completion.splitlines()
|
||
|
|
||
|
if not prompt_lines:
|
||
|
return completion
|
||
|
|
||
|
last_prompt_line = prompt_lines[-1]
|
||
|
cut_index = -1
|
||
|
|
||
|
for i, completion_line in enumerate(completion_lines):
|
||
|
similarity = difflib.SequenceMatcher(None, last_prompt_line,
|
||
|
completion_line).ratio()
|
||
|
if similarity >= threshold:
|
||
|
cut_index = i
|
||
|
break
|
||
|
|
||
|
if cut_index != -1:
|
||
|
return '\n'.join(completion_lines[cut_index + 1:])
|
||
|
else:
|
||
|
return completion
|
||
|
|
||
|
def _process_completions(self, test_case: dict, completions: list) -> list:
|
||
|
"""Process code completion list, which typically involves extracting
|
||
|
code, removing repetitive prefixes caused by chatbot mode, and other
|
||
|
steps to ensure the model-generated code can be compiled successfully.
|
||
|
|
||
|
Args:
|
||
|
test_case (dict): Dictionary containing test case information including:
|
||
|
completions (list): List of code completions generated by the model.
|
||
|
|
||
|
Returns:
|
||
|
list: Processed code completion list.
|
||
|
"""
|
||
|
processed_completions = []
|
||
|
for comp in completions:
|
||
|
comp = self._extract_code(comp)
|
||
|
post_comp = self._remove_prefix(test_case['prompt'], comp)
|
||
|
processed_completions.append(post_comp)
|
||
|
return processed_completions
|
||
|
|
||
|
def _evaluate(
|
||
|
self, input_data: Union[Dict, List]
|
||
|
) -> Tuple[bool, Optional[Union[Dict, List]], Optional[str]]:
|
||
|
"""Evaluate code with retry mechanism.
|
||
|
|
||
|
Args:
|
||
|
input_data: Can be either:
|
||
|
- dict: Dictionary containing code and test information for a single test case
|
||
|
- list: List of dictionaries for batch evaluation
|
||
|
|
||
|
Returns:
|
||
|
tuple: (success, output, error_message)
|
||
|
- success (bool): Whether the evaluation was successful
|
||
|
- output (dict or list): Evaluation output (if successful)
|
||
|
- error_message (str): Error message (if failed)
|
||
|
"""
|
||
|
num_retry = 0
|
||
|
while num_retry < self.retry:
|
||
|
succeed, output = self._code_eval_service(input_data)
|
||
|
if not succeed:
|
||
|
num_retry += 1
|
||
|
time.sleep(10)
|
||
|
else:
|
||
|
break
|
||
|
|
||
|
if not succeed:
|
||
|
return False, None, f'code eval service connection failed: {output}'
|
||
|
|
||
|
return True, output, None
|
||
|
|
||
|
def score(self, predictions: List, references: List,
|
||
|
test_set: Dataset) -> Dict:
|
||
|
"""Score code generation predictions against references.
|
||
|
|
||
|
Args:
|
||
|
predictions (list): List of model-generated code completions.
|
||
|
references (list): List of reference solutions (not directly used in evaluation).
|
||
|
test_set (Dataset): Dataset containing test cases and other metadata.
|
||
|
|
||
|
Returns:
|
||
|
dict: Evaluation results including:
|
||
|
- accuracy: Percentage of correctly solved problems
|
||
|
- details: Detailed results for each test case
|
||
|
- error: Error message if evaluation failed
|
||
|
"""
|
||
|
if len(predictions) != len(references):
|
||
|
return {
|
||
|
'error':
|
||
|
'predictions and references have different '
|
||
|
f'length. len(predictions): {len(predictions)}, '
|
||
|
f'len(references): {len(references)}'
|
||
|
}
|
||
|
|
||
|
test_set = test_set.to_pandas()
|
||
|
# Use the first column as the unique identifier
|
||
|
test_set_origin = test_set.drop_duplicates(subset=test_set.columns[0])
|
||
|
num_repeats = int(len(test_set) / len(test_set_origin))
|
||
|
|
||
|
# 1. Prepare data for all test cases
|
||
|
all_test_cases = []
|
||
|
for i in range(len(test_set_origin)):
|
||
|
test_case = test_set_origin.iloc[i]
|
||
|
completions = predictions[i * num_repeats:(i + 1) * num_repeats]
|
||
|
|
||
|
# Process code completions
|
||
|
processed_completions = self._process_completions(
|
||
|
test_case, completions)
|
||
|
|
||
|
result_dict = {
|
||
|
'name': test_case['name'],
|
||
|
'language': test_case['language'],
|
||
|
'prompt': test_case['prompt'],
|
||
|
'tests': test_case['tests'],
|
||
|
'processed_completions': processed_completions,
|
||
|
'completions': completions
|
||
|
}
|
||
|
|
||
|
all_test_cases.append(result_dict)
|
||
|
|
||
|
# 2. Send all test cases to the evaluation service
|
||
|
success, outputs, error_message = self._evaluate(all_test_cases)
|
||
|
if not success:
|
||
|
return {'error': error_message}
|
||
|
|
||
|
# 3. Process the returned results
|
||
|
details = []
|
||
|
correct = 0
|
||
|
for output in outputs:
|
||
|
if output.get('status') == 'OK':
|
||
|
output['correct'] = True
|
||
|
correct += 1
|
||
|
else:
|
||
|
output['correct'] = False
|
||
|
|
||
|
details.append(output)
|
||
|
|
||
|
return {
|
||
|
f'pass@{num_repeats}': 100 * correct / len(test_set_origin),
|
||
|
'details': details
|
||
|
}
|