mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
62 lines
2.1 KiB
Python
62 lines
2.1 KiB
Python
![]() |
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
||
|
from opencompass.openicl.icl_retriever import ZeroRetriever, FixKRetriever, RandomRetriever
|
||
|
from opencompass.openicl.icl_inferencer import GenInferencer
|
||
|
from opencompass.datasets import NQOpenDataset, NQEvaluator
|
||
|
|
||
|
nq_datasets = []
|
||
|
for k in [0, 1, 5, 25]:
|
||
|
nq_reader_cfg = dict(
|
||
|
input_columns=['question'], output_column='answer', train_split='train', test_split='validation')
|
||
|
|
||
|
if k == 0:
|
||
|
nq_infer_cfg = dict(
|
||
|
prompt_template=dict(
|
||
|
type=PromptTemplate,
|
||
|
template=dict(
|
||
|
round=[
|
||
|
dict(role='HUMAN', prompt='Q: {question}?'),
|
||
|
dict(role='BOT', prompt='A:'),
|
||
|
]
|
||
|
)
|
||
|
),
|
||
|
retriever=dict(type=ZeroRetriever),
|
||
|
inferencer=dict(type=GenInferencer, max_out_len=50)
|
||
|
)
|
||
|
else:
|
||
|
nq_infer_cfg = dict(
|
||
|
ice_template=dict(
|
||
|
type=PromptTemplate,
|
||
|
template=dict(
|
||
|
round=[
|
||
|
dict(role='HUMAN', prompt='Q: {question}?'),
|
||
|
dict(role='BOT', prompt='A: {answer}.\n'),
|
||
|
]
|
||
|
),
|
||
|
),
|
||
|
prompt_template=dict(
|
||
|
type=PromptTemplate,
|
||
|
template=dict(
|
||
|
begin="</E>",
|
||
|
round=[
|
||
|
dict(role='HUMAN', prompt='Q: {question}?'),
|
||
|
dict(role='BOT', prompt='A:'),
|
||
|
]
|
||
|
),
|
||
|
ice_token="</E>",
|
||
|
),
|
||
|
retriever=dict(type=FixKRetriever, fix_id_list=list(range(k))),
|
||
|
inferencer=dict(type=GenInferencer, max_out_len=50, stopping_criteria=["Q:", "\n"]),
|
||
|
)
|
||
|
|
||
|
nq_eval_cfg = dict(evaluator=dict(type=NQEvaluator), pred_role="BOT")
|
||
|
|
||
|
nq_datasets.append(
|
||
|
dict(
|
||
|
type=NQOpenDataset,
|
||
|
abbr=f'nq_open_{k}shot',
|
||
|
path='./data/nq-open/',
|
||
|
reader_cfg=nq_reader_cfg,
|
||
|
infer_cfg=nq_infer_cfg,
|
||
|
eval_cfg=nq_eval_cfg)
|
||
|
)
|