OpenCompass/configs/datasets/math401/math401_gen_ab5f39.py

48 lines
2.0 KiB
Python
Raw Normal View History

from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import MathBenchDataset, Math401Evaluator, mathbench_postprocess
cloze_prompt = [
dict(role='HUMAN', prompt='Q: Calculate 2.9-0.11.'),
dict(role='BOT', prompt='A: Let\'s think step by step, 2.9 - 0.11 equals 2.7900. The answer is 2.7900.\n'),
dict(role='HUMAN', prompt='Q: Calculate 0.15-0.032.'),
dict(role='BOT', prompt='A: Let\'s think step by step, 0.15 - 0.032 equals 0.1180. The answer is 0.1180.\n'),
dict(role='HUMAN', prompt='Q: Calculate 78*64.'),
dict(role='BOT', prompt='A: Let\'s think step by step, 78 multiplied by 64 equals 4992. The answer is 4992.\n'),
dict(role='HUMAN', prompt='Q: Calculate 62×42.'),
dict(role='BOT', prompt='A: Let\'s think step by step, 62 multiplied by 42 equals 2604. The answer is 2604.\n'),
dict(role='HUMAN', prompt='Q: Calculate {question}'),
dict(role='BOT', prompt='A: {answer}\n')]
math401_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=cloze_prompt,
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=512),
)
math401_eval_cfg = dict(
evaluator=dict(type=Math401Evaluator),
pred_postprocessor=dict(type=mathbench_postprocess, name='en'))
math401_datasets = [
dict(
abbr="math401",
type=MathBenchDataset,
path=f"./data/math401/",
with_circular=False,
name="cloze_en",
reader_cfg=dict(
input_columns=["question"],
output_column="answer"
),
infer_cfg=math401_infer_cfg,
eval_cfg=math401_eval_cfg,
)]