mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
48 lines
2.0 KiB
Python
48 lines
2.0 KiB
Python
![]() |
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
|||
|
from opencompass.openicl.icl_retriever import ZeroRetriever
|
|||
|
from opencompass.openicl.icl_inferencer import GenInferencer
|
|||
|
from opencompass.openicl.icl_evaluator import AccEvaluator
|
|||
|
from opencompass.datasets import MathBenchDataset, Math401Evaluator, mathbench_postprocess
|
|||
|
|
|||
|
cloze_prompt = [
|
|||
|
dict(role='HUMAN', prompt='Q: Calculate 2.9-0.11.'),
|
|||
|
dict(role='BOT', prompt='A: Let\'s think step by step, 2.9 - 0.11 equals 2.7900. The answer is 2.7900.\n'),
|
|||
|
dict(role='HUMAN', prompt='Q: Calculate 0.15-0.032.'),
|
|||
|
dict(role='BOT', prompt='A: Let\'s think step by step, 0.15 - 0.032 equals 0.1180. The answer is 0.1180.\n'),
|
|||
|
dict(role='HUMAN', prompt='Q: Calculate 78*64.'),
|
|||
|
dict(role='BOT', prompt='A: Let\'s think step by step, 78 multiplied by 64 equals 4992. The answer is 4992.\n'),
|
|||
|
dict(role='HUMAN', prompt='Q: Calculate 62×42.'),
|
|||
|
dict(role='BOT', prompt='A: Let\'s think step by step, 62 multiplied by 42 equals 2604. The answer is 2604.\n'),
|
|||
|
dict(role='HUMAN', prompt='Q: Calculate {question}'),
|
|||
|
dict(role='BOT', prompt='A: {answer}\n')]
|
|||
|
|
|||
|
math401_infer_cfg = dict(
|
|||
|
prompt_template=dict(
|
|||
|
type=PromptTemplate,
|
|||
|
template=dict(
|
|||
|
round=cloze_prompt,
|
|||
|
),
|
|||
|
),
|
|||
|
retriever=dict(type=ZeroRetriever),
|
|||
|
inferencer=dict(type=GenInferencer, max_out_len=512),
|
|||
|
)
|
|||
|
|
|||
|
math401_eval_cfg = dict(
|
|||
|
evaluator=dict(type=Math401Evaluator),
|
|||
|
pred_postprocessor=dict(type=mathbench_postprocess, name='en'))
|
|||
|
|
|||
|
math401_datasets = [
|
|||
|
dict(
|
|||
|
abbr="math401",
|
|||
|
type=MathBenchDataset,
|
|||
|
path=f"./data/math401/",
|
|||
|
with_circular=False,
|
|||
|
name="cloze_en",
|
|||
|
reader_cfg=dict(
|
|||
|
input_columns=["question"],
|
|||
|
output_column="answer"
|
|||
|
),
|
|||
|
infer_cfg=math401_infer_cfg,
|
|||
|
eval_cfg=math401_eval_cfg,
|
|||
|
)]
|