OpenCompass/configs/datasets/MedBench/medbench_gen_d44f24.py

161 lines
5.7 KiB
Python
Raw Normal View History

from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import (
MedBenchDataset,
MedBenchEvaluator,
MedBenchEvaluator_Cloze,
MedBenchEvaluator_IE,
MedBenchEvaluator_mcq,
MedBenchEvaluator_CMeEE,
MedBenchEvaluator_CMeIE,
MedBenchEvaluator_CHIP_CDEE,
MedBenchEvaluator_CHIP_CDN,
MedBenchEvaluator_CHIP_CTC,
MedBenchEvaluator_NLG,
MedBenchEvaluator_TF,
MedBenchEvaluator_EMR,
)
from opencompass.utils.text_postprocessors import first_capital_postprocess
medbench_reader_cfg = dict(
input_columns=['problem_input'], output_column='label')
medbench_multiple_choices_sets = ['Health_exam', 'DDx-basic', 'DDx-advanced_pre', 'DDx-advanced_final', 'SafetyBench'] # 选择题用acc判断
medbench_qa_sets = ['Health_Counseling', 'Medicine_Counseling', 'MedDG', 'MedSpeQA', 'MedTreat', 'CMB-Clin'] # 开放式QA有标答
medbench_cloze_sets = ['Triage'] # 限定域QA有标答
medbench_single_choice_sets = ['Medicine_attack'] # 正确与否判断,有标答
medbench_ie_sets = ['EMR', 'CMeEE'] # 判断识别的实体是否一致用F1评价
#, 'CMeIE', 'CHIP_CDEE', 'CHIP_CDN', 'CHIP_CTC', 'Doc_parsing', 'MRG'
medbench_datasets = []
for name in medbench_single_choice_sets:
medbench_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[dict(role="HUMAN", prompt='{problem_input}')])),
retriever=dict(type=ZeroRetriever
), # retriver 不起作用,以输入参数为准 (zero-shot / few-shot)
inferencer=dict(type=GenInferencer))
medbench_eval_cfg = dict(
evaluator=dict(type=MedBenchEvaluator_TF), pred_role="BOT")
medbench_datasets.append(
dict(
type=MedBenchDataset,
path='./data/MedBench/' + name,
name=name,
abbr='medbench-' + name,
setting_name='zero-shot',
reader_cfg=medbench_reader_cfg,
infer_cfg=medbench_infer_cfg.copy(),
eval_cfg=medbench_eval_cfg.copy()))
for name in medbench_multiple_choices_sets:
medbench_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[dict(role="HUMAN", prompt='{problem_input}')])),
retriever=dict(type=ZeroRetriever
), # retriver 不起作用,以输入参数为准 (zero-shot / few-shot)
inferencer=dict(type=GenInferencer))
medbench_eval_cfg = dict(
evaluator=dict(type=MedBenchEvaluator), pred_role="BOT")
medbench_datasets.append(
dict(
type=MedBenchDataset,
path='./data/MedBench/' + name,
name=name,
abbr='medbench-' + name,
setting_name='zero-shot',
reader_cfg=medbench_reader_cfg,
infer_cfg=medbench_infer_cfg.copy(),
eval_cfg=medbench_eval_cfg.copy()))
for name in medbench_qa_sets:
medbench_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[dict(role="HUMAN", prompt='{problem_input}')])),
retriever=dict(type=ZeroRetriever
), # retriver 不起作用,以输入参数为准 (zero-shot / few-shot)
inferencer=dict(type=GenInferencer))
medbench_eval_cfg = dict(
evaluator=dict(type=MedBenchEvaluator_NLG), pred_role="BOT")
medbench_datasets.append(
dict(
type=MedBenchDataset,
path='./data/MedBench/' + name,
name=name,
abbr='medbench-' + name,
setting_name='zero-shot',
reader_cfg=medbench_reader_cfg,
infer_cfg=medbench_infer_cfg.copy(),
eval_cfg=medbench_eval_cfg.copy()))
for name in medbench_cloze_sets:
medbench_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[dict(role="HUMAN", prompt='{problem_input}')])),
retriever=dict(type=ZeroRetriever
), # retriver 不起作用,以输入参数为准 (zero-shot / few-shot)
inferencer=dict(type=GenInferencer))
medbench_eval_cfg = dict(
evaluator=dict(type=MedBenchEvaluator_Cloze), pred_role="BOT")
medbench_datasets.append(
dict(
type=MedBenchDataset,
path='./data/MedBench/' + name,
name=name,
abbr='medbench-' + name,
setting_name='zero-shot',
reader_cfg=medbench_reader_cfg,
infer_cfg=medbench_infer_cfg.copy(),
eval_cfg=medbench_eval_cfg.copy()))
for name in medbench_ie_sets:
medbench_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[dict(role="HUMAN", prompt='{problem_input}')])),
retriever=dict(type=ZeroRetriever
), # retriver 不起作用,以输入参数为准 (zero-shot / few-shot)
inferencer=dict(type=GenInferencer))
medbench_eval_cfg = dict(
evaluator=dict(type=eval('MedBenchEvaluator_'+name)), pred_role="BOT")
medbench_datasets.append(
dict(
type=MedBenchDataset,
path='./data/MedBench/' + name,
name=name,
abbr='medbench-' + name,
setting_name='zero-shot',
reader_cfg=medbench_reader_cfg,
infer_cfg=medbench_infer_cfg.copy(),
eval_cfg=medbench_eval_cfg.copy()))
del name, medbench_infer_cfg, medbench_eval_cfg