mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
117 lines
3.6 KiB
Python
117 lines
3.6 KiB
Python
![]() |
from mmengine.config import read_base
|
||
|
with read_base():
|
||
|
from .models.qwen.hf_qwen_7b_chat import models as hf_qwen_7b_chat
|
||
|
from .models.qwen.hf_qwen_14b_chat import models as hf_qwen_14b_chat
|
||
|
from .models.chatglm.hf_chatglm3_6b import models as hf_chatglm3_6b
|
||
|
from .models.baichuan.hf_baichuan2_7b_chat import models as hf_baichuan2_7b
|
||
|
from .models.hf_internlm.hf_internlm_chat_20b import models as hf_internlm_chat_20b
|
||
|
from .models.judge_llm.auto_j.hf_autoj_eng_13b import models as hf_autoj
|
||
|
from .models.judge_llm.judgelm.hf_judgelm_33b_v1 import models as hf_judgelm
|
||
|
from .models.judge_llm.pandalm.hf_pandalm_7b_v1 import models as hf_pandalm
|
||
|
from .datasets.subjective.multiround.mtbench_single_judge import subjective_datasets
|
||
|
#from .datasets.subjective.multiround.mtbench_pair_judge import subjective_datasets
|
||
|
|
||
|
datasets = [*subjective_datasets]
|
||
|
|
||
|
from opencompass.models import HuggingFaceCausalLM, HuggingFace, HuggingFaceChatGLM3
|
||
|
from opencompass.models.openai_api import OpenAIAllesAPIN
|
||
|
from opencompass.partitioners import NaivePartitioner, SizePartitioner
|
||
|
from opencompass.partitioners.sub_naive import SubjectiveNaivePartitioner
|
||
|
from opencompass.partitioners.sub_size import SubjectiveSizePartitioner
|
||
|
from opencompass.runners import LocalRunner
|
||
|
from opencompass.runners import SlurmSequentialRunner
|
||
|
from opencompass.tasks import OpenICLInferTask
|
||
|
from opencompass.tasks.subjective_eval import SubjectiveEvalTask
|
||
|
from opencompass.summarizers import MTBenchSummarizer
|
||
|
|
||
|
|
||
|
# -------------Inferen Stage ----------------------------------------
|
||
|
|
||
|
models = [*hf_chatglm3_6b, *hf_qwen_7b_chat]
|
||
|
infer = dict(
|
||
|
partitioner=dict(type=SizePartitioner, max_task_size=100),
|
||
|
runner=dict(
|
||
|
type=SlurmSequentialRunner,
|
||
|
partition='llmeval',
|
||
|
quotatype='auto',
|
||
|
max_num_workers=256,
|
||
|
task=dict(type=OpenICLInferTask)),
|
||
|
)
|
||
|
|
||
|
# -------------Evalation Stage ----------------------------------------
|
||
|
|
||
|
|
||
|
## ------------- JudgeLLM Configuration
|
||
|
api_meta_template = dict(
|
||
|
round=[
|
||
|
dict(role='HUMAN', api_role='HUMAN'),
|
||
|
dict(role='BOT', api_role='BOT', generate=True),
|
||
|
]
|
||
|
)
|
||
|
|
||
|
judge_model = dict(
|
||
|
abbr='GPT4-Turbo',
|
||
|
type=OpenAIAllesAPIN, path='gpt-4-1106-preview',
|
||
|
key='xxxx', # The key will be obtained from $OPENAI_API_KEY, but you can write down your key here as well
|
||
|
url='xxxx',
|
||
|
meta_template=api_meta_template,
|
||
|
query_per_second=16,
|
||
|
max_out_len=2048,
|
||
|
max_seq_len=2048,
|
||
|
batch_size=8,
|
||
|
temperature = 0
|
||
|
)
|
||
|
|
||
|
## ------------- Evaluation Configuration
|
||
|
'''
|
||
|
## pair evaluation
|
||
|
eval = dict(
|
||
|
partitioner=dict(
|
||
|
type=SubjectiveSizePartitioner,
|
||
|
max_task_size=100,
|
||
|
mode='m2n',
|
||
|
base_models = [*hf_chatglm3_6b, ],
|
||
|
compare_models = models
|
||
|
),
|
||
|
runner=dict(
|
||
|
type=SlurmSequentialRunner,
|
||
|
partition='llmeval',
|
||
|
quotatype='auto',
|
||
|
max_num_workers=32,
|
||
|
task=dict(
|
||
|
type=SubjectiveEvalTask,
|
||
|
judge_cfg=judge_model
|
||
|
)),
|
||
|
)
|
||
|
|
||
|
summarizer = dict(
|
||
|
type=MTBenchSummarizer, judge_type='pair'
|
||
|
)
|
||
|
|
||
|
'''
|
||
|
|
||
|
## single evaluation
|
||
|
eval = dict(
|
||
|
partitioner=dict(
|
||
|
type=SubjectiveSizePartitioner,
|
||
|
max_task_size=100,
|
||
|
mode='singlescore',
|
||
|
models = models
|
||
|
),
|
||
|
runner=dict(
|
||
|
type=SlurmSequentialRunner,
|
||
|
partition='llmeval',
|
||
|
quotatype='auto',
|
||
|
max_num_workers=32,
|
||
|
task=dict(
|
||
|
type=SubjectiveEvalTask,
|
||
|
judge_cfg=judge_model
|
||
|
)),
|
||
|
)
|
||
|
|
||
|
summarizer = dict(
|
||
|
type=MTBenchSummarizer, judge_type='single'
|
||
|
)
|
||
|
|
||
|
work_dir = 'outputs/mtbench/'
|