OpenCompass/opencompass/datasets/mbpp.py

484 lines
17 KiB
Python
Raw Normal View History

2023-07-04 21:34:55 +08:00
import contextlib
import io
import itertools
import json
import multiprocessing
import os.path as osp
2023-07-04 21:34:55 +08:00
import re
import signal
import tempfile
from collections import defaultdict
from concurrent.futures import ProcessPoolExecutor, as_completed
from typing import List, Sequence, Union
2023-07-04 21:34:55 +08:00
import numpy as np
from datasets import Dataset, DatasetDict, concatenate_datasets, load_dataset
2023-07-04 21:34:55 +08:00
from opencompass.openicl.icl_evaluator import BaseEvaluator
from opencompass.registry import ICL_EVALUATORS, LOAD_DATASET
from .base import BaseDataset
@LOAD_DATASET.register_module()
class MBPPDataset(BaseDataset):
@staticmethod
def load(path: str):
def processing_test(example):
example['test_case'] = example['test_list']
example['test_list'] = '\n'.join(example['test_list'])
example['test_list_2'] = example['test_list']
2023-07-04 21:34:55 +08:00
return example
train = load_dataset('json', data_files=path,
split='train[:10]').map(processing_test)
test = load_dataset('json', data_files=path,
split='train[10:510]').map(processing_test)
2023-07-04 21:34:55 +08:00
return DatasetDict({'train': train, 'test': test})
class MBPPDataset_V2(BaseDataset):
@staticmethod
def load(path: str, num_repeats: int = 1):
"""Load mbpp dataset for pass k mode.
Note that you can use num_repeats > 1 when your model does not support
`num_return_sequence` in generation, otherwise use the raw
mbpp dataset and set `num_return_sequence` in model config to
generate multiple responses for testing pass@k>1.
It better to change your dataset abbr correspondingly if you want to
change num_repeats>1, otherwise the number in
`.cache/dataset_size.json` might be inconsistent.
Args:
num_repeats(int): Number of repetition for this dataset to get
multiple responses in special cases.
"""
def processing_test(example):
example['test_case'] = example['test_list']
example['test_list'] = '\n'.join(example['test_list'])
example['test_column'] = dict(test_list_2=example['test_list'],
task_id=example['task_id'])
return example
train = load_dataset('json', data_files=path,
split='train[:10]').map(processing_test)
test = load_dataset('json', data_files=path,
split='train[10:510]').map(processing_test)
test = concatenate_datasets([test] * num_repeats)
return DatasetDict({'train': train, 'test': test})
class SanitizedMBPPDataset(BaseDataset):
@staticmethod
def load(path: str, num_repeats: int = 1):
"""Load mbpp dataset for pass k mode.
Note that you can use num_repeats > 1 when your model does not support
`num_return_sequence` in generation, otherwise use the raw
mbpp dataset and set `num_return_sequence` in model config to
generate multiple responses for testing pass@k>1.
It better to change your dataset abbr correspondingly if you want to
change num_repeats>1, otherwise the number in
`.cache/dataset_size.json` might be inconsistent.
Args:
num_repeats(int): Number of repetition for this dataset to get
multiple responses in special cases.
"""
def processing_test(example):
example['text'] = example.pop('prompt')
# used for prompt
example['test_list'] = '\n'.join(example['test_list'])
# used for eval
example['test_list_2'] = example['test_list']
example['test_column'] = dict(test_list_2=example['test_list'],
task_id=example['task_id'])
return example
# train : test = 7 : 257
train = load_dataset('json', data_files=path,
split='train[:7]').map(processing_test)
test = load_dataset('json', data_files=path,
split='train[7:264]').map(processing_test)
test = concatenate_datasets([test] * num_repeats)
return DatasetDict({'train': train, 'test': test})
class MBPPPlusDataset(BaseDataset):
@staticmethod
def load(path: str, num_repeats: int = 1):
"""Load mbpp dataset for pass k mode. Note that you can use
num_repeats.
> 1 when your model does not support `num_return_sequence` in
generation, otherwise use the raw mbpp dataset and set
`num_return_sequence` in model config to generate multiple responses
for testing pass@k>1.
It better to change your dataset abbr correspondingly if you want to
change num_repeats>1, otherwise the number in
`.cache/dataset_size.json` might be inconsistent.
Args:
num_repeats(int): Number of repetition for this dataset to get
multiple responses in special cases.
"""
2024-04-19 20:49:46 +08:00
def processing_test(example):
example['test_case'] = example['test_list']
example['test_list'] = '\n'.join(example['test_list'])
example['test_list_2'] = example['test_list']
example['test_column'] = dict(test_list_2=example['test_list'],
task_id=example['task_id'])
return example
dataset = []
with open(path, 'r', encoding='utf-8') as f:
for line in f:
2024-04-19 20:49:46 +08:00
example = json.loads(line.strip())
example = processing_test(example)
dataset.extend([example for _ in range(num_repeats)])
return Dataset.from_list(dataset)
2023-07-04 21:34:55 +08:00
class TimeOutException(Exception):
pass
@contextlib.contextmanager
def swallow_io():
stream = WriteOnlyStringIO()
with contextlib.redirect_stdout(stream):
with contextlib.redirect_stderr(stream):
with redirect_stdin(stream):
yield
@contextlib.contextmanager
def time_limit(seconds: float):
def signal_handler(signum, frame):
raise TimeOutException('Time out!')
signal.setitimer(signal.ITIMER_REAL, seconds)
signal.signal(signal.SIGALRM, signal_handler)
try:
yield
finally:
signal.setitimer(signal.ITIMER_REAL, 0)
class WriteOnlyStringIO(io.StringIO):
"""StringIO that throws an exception when it's read from."""
def read(self, *args, **kwargs):
raise IOError
def readline(self, *args, **kwargs):
raise IOError
def readlines(self, *args, **kwargs):
raise IOError
def readable(self, *args, **kwargs):
"""Returns True if the IO object can be read."""
return False
class redirect_stdin(contextlib._RedirectStream): # type: ignore
_stream = 'stdin'
2023-07-04 21:34:55 +08:00
@ICL_EVALUATORS.register_module()
class MBPPEvaluator(BaseEvaluator):
"""Evaluator for MBPP or MBPPPlus."""
def __init__(self, metric: str = 'MBPP') -> None:
self.metric = metric
assert self.metric in ['MBPP', 'MBPPPlus']
2023-07-04 21:34:55 +08:00
def score(self, predictions, references):
assert len(predictions) == len(references)
if self.metric == 'MBPP':
result = {'pass': 0, 'timeout': 0, 'failed': 0, 'wrong_answer': 0}
details = {}
with ProcessPoolExecutor() as executor:
futures = []
for i, (refer, pred) in enumerate(zip(references,
predictions)):
pred = self._process_answer(pred)
programs = self._process_test(refer, pred)
2024-04-19 20:49:46 +08:00
future = executor.submit(execution, programs, i, 10)
futures.append(future)
2024-03-11 22:34:19 +08:00
details[str(i)] = {}
details[str(i)]['origin'] = predictions[i]
details[str(i)]['programs'] = programs
from tqdm import tqdm
for future in tqdm(as_completed(futures), total=len(futures)):
2024-05-21 14:22:46 +08:00
index, ret = future.result()
result[ret] += 1
details[str(index)]['result'] = ret
details[str(index)]['is_correct'] = (ret == 'pass')
result['score'] = result['pass'] / len(predictions) * 100
result['details'] = details
return result
else:
2023-07-04 21:34:55 +08:00
try:
from evalplus.data import write_jsonl
from evalplus.evaluate import evaluate
self.write_jsonl = write_jsonl
self.eval = evaluate
except ImportError:
raise ImportError(
'Please install evalplus use following steps:\n'
'git clone --recurse-submodules git@github.com:open-compass/human-eval.git\n' # noqa
'cd human-eval\n'
'pip install -e .\n'
'pip install -e evalplus\n')
mbpp_preds = []
for preds, refer in zip(predictions, references):
if not isinstance(preds, list):
preds = [preds]
for pred in preds:
2024-04-09 17:50:23 +08:00
pred = self._process_answer(pred)
mbpp_preds.append({'task_id': refer, 'solution': pred})
with tempfile.TemporaryDirectory() as tmp_dir:
out_dir = osp.join(tmp_dir, 'mbpp_eval.jsonl')
self.write_jsonl(out_dir, mbpp_preds)
flags = dict(dataset='mbpp',
samples=out_dir,
base_only=None,
parallel=None,
i_just_wanna_run=None,
test_details=0.2,
min_time_limit=0.2,
gt_time_limit_factor=4.0,
mini=None)
score = self.eval(flags)
return {f'mbpp_plus_{k}': score[k] * 100 for k in score}
2023-07-04 21:34:55 +08:00
def _process_answer(self, text):
2024-04-19 20:49:46 +08:00
patterns = [
r"\[BEGIN\]\s*'(.*)'\s*\[DONE\]",
r"BEGIN\s*'(.*)'\s*\[DONE\]",
r"\[BEGIN\]\s*'(.*)'\s*DONE",
r"BEGIN\s*'(.*)'\s*DONE",
r"\[BEGIN\]\s*'(.*)\s*\[DONE\]",
r"BEGIN\s*'(.*)\s*\[DONE\]",
r"\[BEGIN\]\s*'(.*)\s*DONE",
r"BEGIN\s*'(.*)\s*DONE",
r'\[BEGIN\]\s*(.*)\s*\[DONE\]',
r'BEGIN\s*(.*)\s*\[DONE\]',
r'\[BEGIN\]\s*(.*)\s*DONE',
r'BEGIN\s*(.*)\s*DONE',
r'```python\s*(.*)\s*```',
r'```\s*(.*)\s*```',
r'(.*)\s*```.*',
r"\[BEGIN\]\s*'(.*)",
r'\[BEGIN\](.*)',
2024-05-17 16:50:58 +08:00
r"'(.*)'\s*\[DONE\]",
2024-04-19 20:49:46 +08:00
]
for p in patterns:
match = re.search(p, text, re.DOTALL)
if match:
text = match.group(1)
break
text = text.split('```')[0]
text = re.split(r"'?\s*\[?DONE\]?", text)[0]
text = text.replace('\\_', '_')
2023-07-04 21:34:55 +08:00
text = text.strip()
return text
def _process_test(self, test_case, pred):
formatted = pred + '\n'
formatted += test_case
return formatted
@ICL_EVALUATORS.register_module()
class MBPPEvaluator2(MBPPEvaluator):
"""Better use for WizardCoder evaluation."""
def _process_answer(self, text):
if '```' in text:
blocks = re.findall(r'```(.*?)```', text, re.DOTALL)
if len(blocks) == 0:
text = text.split('```')[1] # fall back to default strategy
else:
text = blocks[0] # fetch the first code block
if not text.startswith(
'\n'): # in case starting with ```python
text = text[max(text.find('\n') + 1, 0):]
else:
match = re.search(r'Here(.*?)\n', text)
if match:
text = re.sub('Here(.*?)\n', '', text, count=1)
# remove test in generation
test_list = ['# Test', '#Test', '#test', '# test']
for s in test_list:
if s in text:
text = text[:text.find(s)]
text = text.strip()
match = re.search(r"('\s*|)(\[DONE\]|DONE)", text)
if match:
text = text[:match.start()]
match = re.search(r"(\[BEGIN\]|BEGIN)('\s*|)", text)
if match:
text = text[match.end():]
text = text.strip()
if text.startswith("'"):
text = text[1:]
return text
def execution(programs, task_id, timeout):
"""Execution function for running generation code.
Args:
programs(str): Python code to be executed.
task_id(int): Task id of the current example.
timeout(int): Time limit for execution, avoid unnecessary
blocking.
In pass@k scenario, a lot of programs should be executed.
Some internal error cannot be handled properly, such as
`RecursionError` might cause system break. It is better to
separate the execution in thread or multiprocess to better
control the process.
"""
def _execution(programs, timeout):
try:
# Add exec globals to prevent the exec to raise
# unnecessary NameError for correct answer
exec_globals = {}
with swallow_io():
with time_limit(timeout):
exec(programs, exec_globals)
key.append('pass')
except TimeOutException:
key.append('timeout')
except AssertionError:
key.append('wrong_answer')
except BaseException as e:
print(e)
key.append('failed')
manager = multiprocessing.Manager()
key = manager.list()
# `signal` cannot be used in child thread, therefore, we
# need to create a process in the thread.
p = multiprocessing.Process(target=_execution,
args=(programs, timeout - 1))
p.start()
p.join(timeout=timeout)
if p.is_alive():
p.kill()
# key might not have value if killed
return task_id, 'timeout'
return task_id, key[0]
class MBPPPassKEvaluator(MBPPEvaluator):
"""Better use for pass k evaluation.
Args:
k(Tuple[int]): Choices of Pass@k. Defaults to (1, 10, 100)
"""
def __init__(self, k=(1, 10, 100)) -> None:
if not isinstance(k, Sequence):
k = (k, )
self.k = k
@staticmethod
def estimate_pass_at_k(
num_samples: Union[int, List[int], np.ndarray],
num_correct: Union[List[int], np.ndarray],
k: int,
) -> np.ndarray:
"""Estimates pass@k of each problem and returns them in an array."""
def estimator(n: int, c: int, k: int) -> float:
"""
Calculates 1 - comb(n - c, k) / comb(n, k).
"""
if n - c < k:
return 1.0
return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1, n + 1))
if isinstance(num_samples, int):
num_samples_it = itertools.repeat(num_samples, len(num_correct))
else:
assert len(num_samples) == len(num_correct)
num_samples_it = iter(num_samples)
return np.array([
estimator(int(n), int(c), k)
for n, c in zip(num_samples_it, num_correct)
])
def score(self, predictions, references):
assert len(predictions) == len(references)
task_pass = defaultdict(int)
task_total = defaultdict(int)
result = {'pass': 0, 'timeout': 0, 'failed': 0, 'wrong_answer': 0}
with ProcessPoolExecutor() as executor:
futures = []
for refer, preds in zip(references, predictions):
# suits for two case
# 1. use repeated dataset
# 2. use `num_return_sequences` to generate multiple responses
if not isinstance(preds, list):
preds = [preds]
test_case = refer['test_list_2']
task_id = refer['task_id']
# create empty task_pass in case all example failed
if task_id not in task_pass:
task_pass[task_id] = 0
for pred in preds:
pred = self._process_answer(pred)
programs = self._process_test(test_case, pred)
2024-04-19 20:49:46 +08:00
future = executor.submit(execution, programs, task_id, 10)
futures.append(future)
from tqdm import tqdm
for future in tqdm(as_completed(futures), total=len(futures)):
task_id, key = future.result()
result[key] += 1
task_total[task_id] += 1
if key == 'pass':
task_pass[task_id] += 1
def get_number(tasks):
return np.array([
task[1] for task in sorted(tasks.items(), key=lambda x: x[0])
])
task_pass = get_number(task_pass)
task_total = get_number(task_total)
pass_at_k = {
f'pass@{k}':
self.estimate_pass_at_k(task_total, task_pass, k).mean() * 100
for k in self.k if (task_total >= k).all()
}
result.update(pass_at_k)
return result