OpenCompass/opencompass/configs/datasets/CLUE_afqmc/CLUE_afqmc_gen_901306.py

44 lines
1.4 KiB
Python
Raw Normal View History

from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import AFQMCDatasetV2
from opencompass.utils.text_postprocessors import first_capital_postprocess
afqmc_reader_cfg = dict(
input_columns=['sentence1', 'sentence2'],
output_column='label',
test_split='train')
afqmc_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt=
'语句一:“{sentence1}\n语句二:“{sentence2}\n语句一与语句二是关于蚂蚁金融产品的疑问,两者所询问的内容是否完全一致?\nA. 不完全一致\nB. 完全一致\n请从“A”“B”中进行选择。\n答:',
),
]),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
afqmc_eval_cfg = dict(
evaluator=dict(type=AccEvaluator),
pred_role='BOT',
pred_postprocessor=dict(type=first_capital_postprocess),
)
afqmc_datasets = [
dict(
abbr='afqmc-dev',
type=AFQMCDatasetV2,
path='opencompass/afqmc-dev',
reader_cfg=afqmc_reader_cfg,
infer_cfg=afqmc_infer_cfg,
eval_cfg=afqmc_eval_cfg,
),
]