OpenCompass/opencompass/datasets/QuALITY.py

62 lines
2.0 KiB
Python
Raw Normal View History

import json
from datasets import Dataset
from opencompass.openicl.icl_evaluator import BaseEvaluator
from opencompass.registry import LOAD_DATASET
[Feature] Support ModelScope datasets (#1289) * add ceval, gsm8k modelscope surpport * update race, mmlu, arc, cmmlu, commonsenseqa, humaneval and unittest * update bbh, flores, obqa, siqa, storycloze, summedits, winogrande, xsum datasets * format file * format file * update dataset format * support ms_dataset * udpate dataset for modelscope support * merge myl_dev and update test_ms_dataset * udpate dataset for modelscope support * update readme * update eval_api_zhipu_v2 * remove unused code * add get_data_path function * update readme * remove tydiqa japanese subset * add ceval, gsm8k modelscope surpport * update race, mmlu, arc, cmmlu, commonsenseqa, humaneval and unittest * update bbh, flores, obqa, siqa, storycloze, summedits, winogrande, xsum datasets * format file * format file * update dataset format * support ms_dataset * udpate dataset for modelscope support * merge myl_dev and update test_ms_dataset * update readme * udpate dataset for modelscope support * update eval_api_zhipu_v2 * remove unused code * add get_data_path function * remove tydiqa japanese subset * update util * remove .DS_Store * fix md format * move util into package * update docs/get_started.md * restore eval_api_zhipu_v2.py, add environment setting * Update dataset * Update * Update * Update * Update --------- Co-authored-by: Yun lin <yunlin@U-Q9X2K4QV-1904.local> Co-authored-by: Yunnglin <mao.looper@qq.com> Co-authored-by: Yun lin <yunlin@laptop.local> Co-authored-by: Yunnglin <maoyl@smail.nju.edu.cn> Co-authored-by: zhangsongyang <zhangsongyang@pjlab.org.cn>
2024-07-29 13:48:32 +08:00
from opencompass.utils import get_data_path
from .base import BaseDataset
@LOAD_DATASET.register_module()
class QuALITYDataset(BaseDataset):
@staticmethod
def load(path: str):
[Feature] Support ModelScope datasets (#1289) * add ceval, gsm8k modelscope surpport * update race, mmlu, arc, cmmlu, commonsenseqa, humaneval and unittest * update bbh, flores, obqa, siqa, storycloze, summedits, winogrande, xsum datasets * format file * format file * update dataset format * support ms_dataset * udpate dataset for modelscope support * merge myl_dev and update test_ms_dataset * udpate dataset for modelscope support * update readme * update eval_api_zhipu_v2 * remove unused code * add get_data_path function * update readme * remove tydiqa japanese subset * add ceval, gsm8k modelscope surpport * update race, mmlu, arc, cmmlu, commonsenseqa, humaneval and unittest * update bbh, flores, obqa, siqa, storycloze, summedits, winogrande, xsum datasets * format file * format file * update dataset format * support ms_dataset * udpate dataset for modelscope support * merge myl_dev and update test_ms_dataset * update readme * udpate dataset for modelscope support * update eval_api_zhipu_v2 * remove unused code * add get_data_path function * remove tydiqa japanese subset * update util * remove .DS_Store * fix md format * move util into package * update docs/get_started.md * restore eval_api_zhipu_v2.py, add environment setting * Update dataset * Update * Update * Update * Update --------- Co-authored-by: Yun lin <yunlin@U-Q9X2K4QV-1904.local> Co-authored-by: Yunnglin <mao.looper@qq.com> Co-authored-by: Yun lin <yunlin@laptop.local> Co-authored-by: Yunnglin <maoyl@smail.nju.edu.cn> Co-authored-by: zhangsongyang <zhangsongyang@pjlab.org.cn>
2024-07-29 13:48:32 +08:00
path = get_data_path(path, local_mode=True)
dataset_list = []
with open(path, 'r', encoding='utf-8') as f:
for line in f:
line = json.loads(line)
for question in line['questions']:
dataset_list.append({
'article':
line['article'],
'question':
question['question'],
'A':
question['options'][0],
'B':
question['options'][1],
'C':
question['options'][2],
'D':
question['options'][3],
'gold_label':
'ABCD'[question['gold_label'] - 1],
'difficult':
question['difficult']
})
return Dataset.from_list(dataset_list)
class QuALITYEvaluator(BaseEvaluator):
def score(self, predictions, references, test_set):
assert len(predictions) == len(references)
easy, hard, all = [], [], []
for pred, refer, test in zip(predictions, references, test_set):
if pred == refer:
answer = True
else:
answer = False
all.append(answer)
if test['difficult'] == 0:
easy.append(answer)
else:
hard.append(answer)
return dict(easy_acc=sum(easy) / len(easy) * 100,
hard_acc=sum(hard) / len(easy) * 100,
all_acc=sum(all) / len(all) * 100)