mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
252 lines
8.3 KiB
Python
252 lines
8.3 KiB
Python
![]() |
# flake8: noqa: E501
|
||
|
import json
|
||
|
import time
|
||
|
from concurrent.futures import ThreadPoolExecutor
|
||
|
from typing import Dict, List, Optional, Union
|
||
|
|
||
|
import requests
|
||
|
|
||
|
from opencompass.utils.prompt import PromptList
|
||
|
|
||
|
from .base_api import BaseAPIModel
|
||
|
|
||
|
PromptType = Union[PromptList, str, float]
|
||
|
|
||
|
|
||
|
class Gemini(BaseAPIModel):
|
||
|
"""Model wrapper around Gemini models.
|
||
|
|
||
|
Documentation:
|
||
|
|
||
|
Args:
|
||
|
path (str): The name of Gemini model.
|
||
|
e.g. `gemini-pro`
|
||
|
key (str): Authorization key.
|
||
|
query_per_second (int): The maximum queries allowed per second
|
||
|
between two consecutive calls of the API. Defaults to 1.
|
||
|
max_seq_len (int): Unused here.
|
||
|
meta_template (Dict, optional): The model's meta prompt
|
||
|
template if needed, in case the requirement of injecting or
|
||
|
wrapping of any meta instructions.
|
||
|
retry (int): Number of retires if the API call fails. Defaults to 2.
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
key: str,
|
||
|
path: str,
|
||
|
query_per_second: int = 2,
|
||
|
max_seq_len: int = 2048,
|
||
|
meta_template: Optional[Dict] = None,
|
||
|
retry: int = 2,
|
||
|
temperature: float = 1.0,
|
||
|
top_p: float = 0.8,
|
||
|
top_k: float = 10.0,
|
||
|
):
|
||
|
super().__init__(path=path,
|
||
|
max_seq_len=max_seq_len,
|
||
|
query_per_second=query_per_second,
|
||
|
meta_template=meta_template,
|
||
|
retry=retry)
|
||
|
self.url = f'https://generativelanguage.googleapis.com/v1beta/models/gemini-pro:generateContent?key={key}'
|
||
|
self.temperature = temperature
|
||
|
self.top_p = top_p
|
||
|
self.top_k = top_k
|
||
|
self.headers = {
|
||
|
'content-type': 'application/json',
|
||
|
}
|
||
|
|
||
|
def generate(
|
||
|
self,
|
||
|
inputs: List[str or PromptList],
|
||
|
max_out_len: int = 512,
|
||
|
) -> List[str]:
|
||
|
"""Generate results given a list of inputs.
|
||
|
|
||
|
Args:
|
||
|
inputs (List[str or PromptList]): A list of strings or PromptDicts.
|
||
|
The PromptDict should be organized in OpenCompass'
|
||
|
API format.
|
||
|
max_out_len (int): The maximum length of the output.
|
||
|
|
||
|
Returns:
|
||
|
List[str]: A list of generated strings.
|
||
|
"""
|
||
|
with ThreadPoolExecutor() as executor:
|
||
|
results = list(
|
||
|
executor.map(self._generate, inputs,
|
||
|
[max_out_len] * len(inputs)))
|
||
|
self.flush()
|
||
|
return results
|
||
|
|
||
|
def _generate(
|
||
|
self,
|
||
|
input: str or PromptList,
|
||
|
max_out_len: int = 512,
|
||
|
) -> str:
|
||
|
"""Generate results given an input.
|
||
|
|
||
|
Args:
|
||
|
inputs (str or PromptList): A string or PromptDict.
|
||
|
The PromptDict should be organized in OpenCompass'
|
||
|
API format.
|
||
|
max_out_len (int): The maximum length of the output.
|
||
|
|
||
|
Returns:
|
||
|
str: The generated string.
|
||
|
"""
|
||
|
assert isinstance(input, (str, PromptList))
|
||
|
|
||
|
if isinstance(input, str):
|
||
|
messages = [{'role': 'user', 'parts': [{'text': input}]}]
|
||
|
else:
|
||
|
messages = []
|
||
|
system_prompt = None
|
||
|
for item in input:
|
||
|
if item['role'] == 'SYSTEM':
|
||
|
system_prompt = item['prompt']
|
||
|
for item in input:
|
||
|
if system_prompt is not None:
|
||
|
msg = {
|
||
|
'parts': [{
|
||
|
'text': system_prompt + '\n' + item['prompt']
|
||
|
}]
|
||
|
}
|
||
|
else:
|
||
|
msg = {'parts': [{'text': item['prompt']}]}
|
||
|
if item['role'] == 'HUMAN':
|
||
|
msg['role'] = 'user'
|
||
|
messages.append(msg)
|
||
|
elif item['role'] == 'BOT':
|
||
|
msg['role'] = 'model'
|
||
|
messages.append(msg)
|
||
|
elif item['role'] == 'SYSTEM':
|
||
|
pass
|
||
|
|
||
|
# model can be response with user and system
|
||
|
# when it comes with agent involved.
|
||
|
assert msg['role'] in ['user', 'system']
|
||
|
|
||
|
data = {
|
||
|
'model':
|
||
|
self.path,
|
||
|
'contents':
|
||
|
messages,
|
||
|
'safetySettings': [
|
||
|
{
|
||
|
'category': 'HARM_CATEGORY_DANGEROUS_CONTENT',
|
||
|
'threshold': 'BLOCK_NONE'
|
||
|
},
|
||
|
{
|
||
|
'category': 'HARM_CATEGORY_HATE_SPEECH',
|
||
|
'threshold': 'BLOCK_NONE'
|
||
|
},
|
||
|
{
|
||
|
'category': 'HARM_CATEGORY_HARASSMENT',
|
||
|
'threshold': 'BLOCK_NONE'
|
||
|
},
|
||
|
{
|
||
|
'category': 'HARM_CATEGORY_DANGEROUS_CONTENT',
|
||
|
'threshold': 'BLOCK_NONE'
|
||
|
},
|
||
|
],
|
||
|
'generationConfig': {
|
||
|
'candidate_count': 1,
|
||
|
'temperature': self.temperature,
|
||
|
'maxOutputTokens': 2048,
|
||
|
'topP': self.top_p,
|
||
|
'topK': self.top_k
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for _ in range(self.retry):
|
||
|
self.wait()
|
||
|
raw_response = requests.post(self.url,
|
||
|
headers=self.headers,
|
||
|
data=json.dumps(data))
|
||
|
try:
|
||
|
response = raw_response.json()
|
||
|
except requests.JSONDecodeError:
|
||
|
self.logger.error('JsonDecode error, got',
|
||
|
str(raw_response.content))
|
||
|
time.sleep(1)
|
||
|
continue
|
||
|
if raw_response.status_code == 200 and response['msg'] == 'ok':
|
||
|
body = response['body']
|
||
|
if 'candidates' not in body:
|
||
|
self.logger.error(response)
|
||
|
else:
|
||
|
if 'content' not in body['candidates'][0]:
|
||
|
return "Due to Google's restrictive policies, I am unable to respond to this question."
|
||
|
else:
|
||
|
return body['candidates'][0]['content']['parts'][0][
|
||
|
'text'].strip()
|
||
|
self.logger.error(response['msg'])
|
||
|
self.logger.error(response)
|
||
|
time.sleep(1)
|
||
|
|
||
|
raise RuntimeError('API call failed.')
|
||
|
|
||
|
|
||
|
class GeminiAllesAPIN(Gemini):
|
||
|
"""Model wrapper around Gemini models.
|
||
|
|
||
|
Documentation:
|
||
|
|
||
|
Args:
|
||
|
path (str): The name of Gemini model.
|
||
|
e.g. `gemini-pro`
|
||
|
key (str): Authorization key.
|
||
|
query_per_second (int): The maximum queries allowed per second
|
||
|
between two consecutive calls of the API. Defaults to 1.
|
||
|
max_seq_len (int): Unused here.
|
||
|
meta_template (Dict, optional): The model's meta prompt
|
||
|
template if needed, in case the requirement of injecting or
|
||
|
wrapping of any meta instructions.
|
||
|
retry (int): Number of retires if the API call fails. Defaults to 2.
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
path: str,
|
||
|
key: str,
|
||
|
url: str,
|
||
|
query_per_second: int = 2,
|
||
|
max_seq_len: int = 2048,
|
||
|
meta_template: Optional[Dict] = None,
|
||
|
retry: int = 2,
|
||
|
temperature: float = 1.0,
|
||
|
top_p: float = 0.8,
|
||
|
top_k: float = 10.0,
|
||
|
):
|
||
|
super().__init__(key=key,
|
||
|
path=path,
|
||
|
max_seq_len=max_seq_len,
|
||
|
query_per_second=query_per_second,
|
||
|
meta_template=meta_template,
|
||
|
retry=retry)
|
||
|
# Replace the url and headers into AllesApin
|
||
|
self.url = url
|
||
|
self.headers = {
|
||
|
'alles-apin-token': key,
|
||
|
'content-type': 'application/json',
|
||
|
}
|
||
|
|
||
|
def generate(
|
||
|
self,
|
||
|
inputs: List[str or PromptList],
|
||
|
max_out_len: int = 512,
|
||
|
) -> List[str]:
|
||
|
"""Generate results given a list of inputs.
|
||
|
|
||
|
Args:
|
||
|
inputs (List[str or PromptList]): A list of strings or PromptDicts.
|
||
|
The PromptDict should be organized in OpenCompass'
|
||
|
API format.
|
||
|
max_out_len (int): The maximum length of the output.
|
||
|
|
||
|
Returns:
|
||
|
List[str]: A list of generated strings.
|
||
|
"""
|
||
|
return super().generate(inputs, max_out_len)
|