mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
63 lines
1.6 KiB
Python
63 lines
1.6 KiB
Python
![]() |
from mmengine.config import read_base
|
||
|
|
||
|
with read_base():
|
||
|
# Inference PPL datasets
|
||
|
from .datasets.inference_ppl.inference_ppl import inference_ppl_datasets
|
||
|
|
||
|
# Model configs
|
||
|
from .models.qwen.hf_qwen1_5_7b import models as qwen1_5_7b
|
||
|
from .models.qwen.hf_qwen1_5_14b import models as qwen1_5_14b
|
||
|
from .models.hf_llama.hf_llama2_7b import models as llama2_7b
|
||
|
from .models.hf_llama.hf_llama2_13b import models as llama2_13b
|
||
|
|
||
|
|
||
|
from opencompass.partitioners import NaivePartitioner
|
||
|
from opencompass.runners import LocalRunner
|
||
|
from opencompass.tasks import OpenICLInferTask, OpenICLEvalTask
|
||
|
|
||
|
|
||
|
# -------------Inference Stage ----------------------------------------
|
||
|
|
||
|
datasets = [*inference_ppl_datasets]
|
||
|
workdir = 'outputs/inference_ppl'
|
||
|
|
||
|
models = [
|
||
|
*qwen1_5_7b,
|
||
|
*qwen1_5_14b,
|
||
|
*llama2_7b,
|
||
|
*llama2_13b,
|
||
|
]
|
||
|
|
||
|
|
||
|
|
||
|
# Set custom batch_size and num_gpus for faster loss calculation
|
||
|
# Smaller batch_size should give more precise results, at the cost of worse efficiency
|
||
|
model_cfg = dict(
|
||
|
batch_size=8,
|
||
|
run_cfg=dict(num_gpus=4, num_procs=1)
|
||
|
)
|
||
|
|
||
|
for mdl in models:
|
||
|
mdl.update(model_cfg)
|
||
|
|
||
|
|
||
|
infer = dict(
|
||
|
partitioner=dict(type=NaivePartitioner),
|
||
|
runner=dict(
|
||
|
type=LocalRunner,
|
||
|
task=dict(type=OpenICLInferTask),
|
||
|
max_num_workers=256, # Maximum concurrent evaluation task count
|
||
|
),
|
||
|
)
|
||
|
|
||
|
|
||
|
# -------------Evaluation Stage ----------------------------------------
|
||
|
eval = dict(
|
||
|
partitioner=dict(type=NaivePartitioner),
|
||
|
runner=dict(
|
||
|
type=LocalRunner,
|
||
|
task=dict(type=OpenICLEvalTask),
|
||
|
max_num_workers=256,
|
||
|
)
|
||
|
)
|