OpenCompass/opencompass/datasets/squad20.py

67 lines
2.3 KiB
Python
Raw Normal View History

import json
from datasets import Dataset
from opencompass.openicl.icl_evaluator import BaseEvaluator
from opencompass.utils.text_postprocessors import general_postprocess
from .base import BaseDataset
class SQuAD20Dataset(BaseDataset):
@staticmethod
def load(path: str):
with open(path, 'r') as f:
data = json.load(f)
data = data['data']
dataset = []
for article in data:
for paragraph in article['paragraphs']:
for qa in paragraph['qas']:
is_impossible = qa['is_impossible']
if not is_impossible:
answers = list(
set([answer['text'] for answer in qa['answers']]))
else:
answers = list(
set([
answer['text']
for answer in qa['plausible_answers']
]))
answers += ['impossible to answer']
item = {
'context': paragraph['context'],
'question': qa['question'],
'answers': answers,
}
dataset.append(item)
dataset = Dataset.from_list(dataset)
return dataset
class SQuAD20Evaluator(BaseEvaluator):
def score(self, predictions, references):
if len(predictions) != len(references):
return {
'error': 'predictions and references have different '
'length'
}
processed_predictions = []
for prediction in predictions:
prediction = prediction.split('\n')[0].lower()
if 'answer is' in prediction:
prediction = prediction.split('answer is')[-1]
prediction = general_postprocess(prediction)
processed_predictions.append(prediction)
processed_answers = [[general_postprocess(j).lower() for j in i]
for i in references]
cnt = 0
for pred, cand_ans in zip(processed_predictions, processed_answers):
cnt += int(any([cand == pred for cand in cand_ans]))
score = cnt / len(predictions) * 100
return {'score': score}