mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
67 lines
2.3 KiB
Python
67 lines
2.3 KiB
Python
![]() |
import json
|
||
|
|
||
|
from datasets import Dataset
|
||
|
|
||
|
from opencompass.openicl.icl_evaluator import BaseEvaluator
|
||
|
from opencompass.utils.text_postprocessors import general_postprocess
|
||
|
|
||
|
from .base import BaseDataset
|
||
|
|
||
|
|
||
|
class SQuAD20Dataset(BaseDataset):
|
||
|
|
||
|
@staticmethod
|
||
|
def load(path: str):
|
||
|
with open(path, 'r') as f:
|
||
|
data = json.load(f)
|
||
|
data = data['data']
|
||
|
dataset = []
|
||
|
for article in data:
|
||
|
for paragraph in article['paragraphs']:
|
||
|
for qa in paragraph['qas']:
|
||
|
is_impossible = qa['is_impossible']
|
||
|
if not is_impossible:
|
||
|
answers = list(
|
||
|
set([answer['text'] for answer in qa['answers']]))
|
||
|
else:
|
||
|
answers = list(
|
||
|
set([
|
||
|
answer['text']
|
||
|
for answer in qa['plausible_answers']
|
||
|
]))
|
||
|
answers += ['impossible to answer']
|
||
|
item = {
|
||
|
'context': paragraph['context'],
|
||
|
'question': qa['question'],
|
||
|
'answers': answers,
|
||
|
}
|
||
|
dataset.append(item)
|
||
|
dataset = Dataset.from_list(dataset)
|
||
|
return dataset
|
||
|
|
||
|
|
||
|
class SQuAD20Evaluator(BaseEvaluator):
|
||
|
|
||
|
def score(self, predictions, references):
|
||
|
if len(predictions) != len(references):
|
||
|
return {
|
||
|
'error': 'predictions and references have different '
|
||
|
'length'
|
||
|
}
|
||
|
processed_predictions = []
|
||
|
for prediction in predictions:
|
||
|
prediction = prediction.split('\n')[0].lower()
|
||
|
if 'answer is' in prediction:
|
||
|
prediction = prediction.split('answer is')[-1]
|
||
|
prediction = general_postprocess(prediction)
|
||
|
processed_predictions.append(prediction)
|
||
|
processed_answers = [[general_postprocess(j).lower() for j in i]
|
||
|
for i in references]
|
||
|
|
||
|
cnt = 0
|
||
|
for pred, cand_ans in zip(processed_predictions, processed_answers):
|
||
|
cnt += int(any([cand == pred for cand in cand_ans]))
|
||
|
score = cnt / len(predictions) * 100
|
||
|
|
||
|
return {'score': score}
|