mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
81 lines
2.3 KiB
Python
81 lines
2.3 KiB
Python
![]() |
import json
|
||
|
import re
|
||
|
import string
|
||
|
|
||
|
from datasets import Dataset, DatasetDict
|
||
|
|
||
|
from opencompass.openicl.icl_evaluator import BaseEvaluator
|
||
|
from opencompass.registry import LOAD_DATASET
|
||
|
|
||
|
from .base import BaseDataset
|
||
|
|
||
|
# Modified from https://github.com/openai/simple-evals/blob/main/drop_eval.py
|
||
|
|
||
|
ANSWER_PATTERN = r'(?i)Answer\s*:\s*([^\n]+)'
|
||
|
|
||
|
|
||
|
def normalize(s: str) -> str:
|
||
|
"""Lower text and remove punctuation, articles and extra whitespace."""
|
||
|
s = s.lower()
|
||
|
exclude = set(string.punctuation)
|
||
|
s = ''.join(char for char in s if char not in exclude)
|
||
|
s = re.sub(r'\b(a|an|the)\b', ' ', s)
|
||
|
s = ' '.join(s.split())
|
||
|
return s
|
||
|
|
||
|
|
||
|
def fuzzy_match(s1: str, s2: str) -> bool:
|
||
|
s1 = normalize(s1)
|
||
|
s2 = normalize(s2)
|
||
|
|
||
|
if s1 == '' or s2 == '':
|
||
|
return s1 == s2
|
||
|
|
||
|
return s1 in s2 or s2 in s1
|
||
|
|
||
|
|
||
|
@LOAD_DATASET.register_module()
|
||
|
class DropOpenAIDataset(BaseDataset):
|
||
|
|
||
|
@staticmethod
|
||
|
def load(path):
|
||
|
dataset_list = []
|
||
|
with open(path, 'r', encoding='utf-8') as f:
|
||
|
for line in f:
|
||
|
data = json.loads(line)
|
||
|
item = {
|
||
|
'prompt': data['context'],
|
||
|
'answers': data['ref_text'],
|
||
|
}
|
||
|
dataset_list.append(item)
|
||
|
|
||
|
dataset_list = Dataset.from_list(dataset_list)
|
||
|
return DatasetDict({'validation': dataset_list})
|
||
|
|
||
|
|
||
|
class DropOpenAIEvaluator(BaseEvaluator):
|
||
|
|
||
|
def score(self, predictions, references):
|
||
|
if len(predictions) != len(references):
|
||
|
return {'error': 'preds and refers have different length'}
|
||
|
num_correct = 0
|
||
|
count = 0
|
||
|
details = []
|
||
|
for pred, refr in zip(predictions, references):
|
||
|
match = re.search(ANSWER_PATTERN, pred)
|
||
|
extracted_answer = match.group(1) if match else pred
|
||
|
refrs = refr.split('|')
|
||
|
matches = [
|
||
|
fuzzy_match(extracted_answer, correct_answer)
|
||
|
for correct_answer in refrs
|
||
|
]
|
||
|
correct = True in matches
|
||
|
num_correct += correct
|
||
|
|
||
|
detail = {'pred': pred, 'answer': refr, 'correct': correct}
|
||
|
count += 1
|
||
|
|
||
|
details.append(detail)
|
||
|
result = {'accuracy': 100 * num_correct / count, 'details': details}
|
||
|
return result
|