mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
48 lines
1.2 KiB
Python
48 lines
1.2 KiB
Python
![]() |
import json
|
||
|
import os.path as osp
|
||
|
|
||
|
from datasets import Dataset
|
||
|
|
||
|
from opencompass.openicl.icl_evaluator import BaseEvaluator
|
||
|
from opencompass.registry import ICL_EVALUATORS, LOAD_DATASET
|
||
|
|
||
|
from .base import BaseDataset
|
||
|
|
||
|
|
||
|
@LOAD_DATASET.register_module()
|
||
|
class OpenFinDataDataset(BaseDataset):
|
||
|
|
||
|
@staticmethod
|
||
|
def load(path: str, name: str):
|
||
|
with open(osp.join(path, f'{name}.json'), 'r') as f:
|
||
|
data = json.load(f)
|
||
|
return Dataset.from_list(data)
|
||
|
|
||
|
|
||
|
@ICL_EVALUATORS.register_module()
|
||
|
class OpenFinDataKWEvaluator(BaseEvaluator):
|
||
|
|
||
|
def __init__(self, ):
|
||
|
super().__init__()
|
||
|
|
||
|
def score(self, predictions, references):
|
||
|
assert len(predictions) == len(references)
|
||
|
|
||
|
scores = []
|
||
|
results = dict()
|
||
|
|
||
|
for i in range(len(references)):
|
||
|
all_hit = True
|
||
|
judgement = references[i].split('、')
|
||
|
for item in judgement:
|
||
|
if item not in predictions[i]:
|
||
|
all_hit = False
|
||
|
break
|
||
|
if all_hit:
|
||
|
scores.append(True)
|
||
|
else:
|
||
|
scores.append(False)
|
||
|
|
||
|
results['accuracy'] = round(sum(scores) / len(scores), 4) * 100
|
||
|
return results
|