OpenCompass/configs/datasets/mmlu/mmlu_gen_23a9a9.py

125 lines
3.6 KiB
Python
Raw Normal View History

2023-07-04 21:34:55 +08:00
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import FixKRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import MMLUDataset
from opencompass.utils.text_postprocessors import first_capital_postprocess
2023-07-04 21:34:55 +08:00
# None of the mmlu dataset in huggingface is correctly parsed, so we use our own dataset reader
# Please download the dataset from https://people.eecs.berkeley.edu/~hendrycks/data.tar
mmlu_reader_cfg = dict(
2024-05-14 15:35:58 +08:00
input_columns=['input', 'A', 'B', 'C', 'D'],
output_column='target',
2023-07-04 21:34:55 +08:00
train_split='dev')
mmlu_prompt_template = dict(
type='PromptTemplate',
template=None,
ice_token='</E>')
mmlu_infer_cfg = dict(
ice_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt='{input}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\nAnswer: '
),
dict(role='BOT', prompt='{target}\n')
])),
prompt_template=mmlu_prompt_template,
retriever=dict(type=FixKRetriever, fix_id_list=[0, 1, 2, 3, 4]),
inferencer=dict(type=GenInferencer))
2023-07-04 21:34:55 +08:00
mmlu_eval_cfg = dict(
evaluator=dict(type=AccEvaluator),
pred_postprocessor=dict(type=first_capital_postprocess))
2023-07-04 21:34:55 +08:00
mmlu_all_sets = [
2024-05-14 15:35:58 +08:00
'college_biology',
'college_chemistry',
'college_computer_science',
'college_mathematics',
'college_physics',
'electrical_engineering',
'astronomy',
'anatomy',
'abstract_algebra',
'machine_learning',
'clinical_knowledge',
'global_facts',
'management',
'nutrition',
'marketing',
'professional_accounting',
'high_school_geography',
'international_law',
'moral_scenarios',
'computer_security',
'high_school_microeconomics',
'professional_law',
'medical_genetics',
'professional_psychology',
'jurisprudence',
'world_religions',
'philosophy',
'virology',
'high_school_chemistry',
'public_relations',
'high_school_macroeconomics',
'human_sexuality',
'elementary_mathematics',
'high_school_physics',
'high_school_computer_science',
'high_school_european_history',
'business_ethics',
'moral_disputes',
'high_school_statistics',
'miscellaneous',
'formal_logic',
'high_school_government_and_politics',
'prehistory',
'security_studies',
'high_school_biology',
'logical_fallacies',
'high_school_world_history',
'professional_medicine',
'high_school_mathematics',
'college_medicine',
'high_school_us_history',
'sociology',
'econometrics',
'high_school_psychology',
'human_aging',
'us_foreign_policy',
'conceptual_physics',
2023-07-04 21:34:55 +08:00
]
mmlu_datasets = []
for _name in mmlu_all_sets:
mmlu_datasets.append(
dict(
2024-05-14 15:35:58 +08:00
abbr=f'lukaemon_mmlu_{_name}',
2023-07-04 21:34:55 +08:00
type=MMLUDataset,
2024-05-14 15:35:58 +08:00
path='./data/mmlu/',
2023-07-04 21:34:55 +08:00
name=_name,
reader_cfg=mmlu_reader_cfg,
infer_cfg=mmlu_infer_cfg.copy(),
eval_cfg=mmlu_eval_cfg))
mmlu_datasets[-1]['infer_cfg'][
'prompt_template'] = mmlu_prompt_template.copy()
mmlu_datasets[-1]['infer_cfg']['prompt_template']['template'] = \
dict(
begin=[
dict(role='SYSTEM', fallback_role='HUMAN', prompt=f'The following are multiple choice questions (with answers) about {_name.replace("_", " ")}.'),
'</E>',
],
round=[
dict(role='HUMAN', prompt='{input}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\nAnswer: '),
]
)
del _name