OpenCompass/configs/datasets/CLUE_afqmc/CLUE_afqmc_gen_901306.py

44 lines
1.4 KiB
Python
Raw Normal View History

2023-07-04 22:11:33 +08:00
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import AFQMCDataset_V2
from opencompass.utils.text_postprocessors import first_capital_postprocess
2023-07-04 22:11:33 +08:00
afqmc_reader_cfg = dict(
2024-05-14 15:35:58 +08:00
input_columns=['sentence1', 'sentence2'],
output_column='label',
test_split='train')
2023-07-04 22:11:33 +08:00
afqmc_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
2024-05-14 15:35:58 +08:00
role='HUMAN',
2023-07-04 22:11:33 +08:00
prompt=
2024-05-14 15:35:58 +08:00
'语句一:“{sentence1}\n语句二:“{sentence2}\n语句一与语句二是关于蚂蚁金融产品的疑问,两者所询问的内容是否完全一致?\nA. 不完全一致\nB. 完全一致\n请从“A”“B”中进行选择。\n答:',
2023-07-04 22:11:33 +08:00
),
]),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
afqmc_eval_cfg = dict(
evaluator=dict(type=AccEvaluator),
2024-05-14 15:35:58 +08:00
pred_role='BOT',
pred_postprocessor=dict(type=first_capital_postprocess),
2023-07-04 22:11:33 +08:00
)
afqmc_datasets = [
dict(
2024-05-14 15:35:58 +08:00
abbr='afqmc-dev',
2023-07-04 22:11:33 +08:00
type=AFQMCDataset_V2,
2024-05-14 15:35:58 +08:00
path='./data/CLUE/AFQMC/dev.json',
2023-07-04 22:11:33 +08:00
reader_cfg=afqmc_reader_cfg,
infer_cfg=afqmc_infer_cfg,
eval_cfg=afqmc_eval_cfg,
),
]