OpenCompass/configs/datasets/nq/nq_gen_0356ec.py

62 lines
2.5 KiB
Python
Raw Normal View History

from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever, FixKRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import NaturalQuestionDataset, NQEvaluator
nq_datasets = []
for k in [0, 1, 5]:
nq_reader_cfg = dict(
input_columns=['question'], output_column='answer', train_split='dev')
if k == 0:
nq_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(role='HUMAN', prompt='Answer these questions, your answer should be as simple as possible, start your answer with the prompt \'The answer is \'.\nQ: {question}?'),
dict(role='BOT', prompt='A:'),
]
)
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=50)
)
else:
nq_infer_cfg = dict(
ice_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(role='HUMAN', prompt='Answer the question, your answer should be as simple as possible, start your answer with the prompt \'The answer is \'.\nQ: {question}?'),
dict(role='BOT', prompt='A: The answer is {answer}.\n'),
]
),
),
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin="</E>",
round=[
dict(role='HUMAN', prompt='Answer the question, your answer should be as simple as possible, start your answer with the prompt \'The answer is \'.\nQ: {question}?'),
dict(role='BOT', prompt='A:'),
]
),
ice_token="</E>",
),
retriever=dict(type=FixKRetriever, fix_id_list=list(range(k))),
inferencer=dict(type=GenInferencer, max_out_len=50),
)
nq_eval_cfg = dict(evaluator=dict(type=NQEvaluator), pred_role="BOT")
nq_datasets.append(
dict(
type=NaturalQuestionDataset,
abbr='nq' if k == 0 else f'nq_{k}shot',
path='./data/nq/',
reader_cfg=nq_reader_cfg,
infer_cfg=nq_infer_cfg,
eval_cfg=nq_eval_cfg)
)