OpenCompass/tools/results_station.py

182 lines
6.4 KiB
Python
Raw Normal View History

2025-02-26 14:32:41 +08:00
import argparse
2025-02-26 14:42:28 +08:00
import json
import os
2025-02-26 14:32:41 +08:00
import yaml
2025-02-26 14:42:28 +08:00
from dotenv import load_dotenv
2025-02-26 14:32:41 +08:00
load_dotenv()
2025-02-26 14:42:28 +08:00
RESULTS_STATION_PATH = os.getenv('RESULTS_STATION_PATH')
2025-02-26 14:32:41 +08:00
data_file_map = {
'ifeval': 'IFEval',
}
2025-02-26 14:42:28 +08:00
data_prefix_map = {}
2025-02-26 14:32:41 +08:00
with open('dataset-index.yml', 'r') as f1:
data_list = yaml.load(f1, Loader=yaml.FullLoader)
f1.close()
data_searchable_list = [next(iter(i.keys())) for i in data_list]
2025-02-26 14:42:28 +08:00
2025-02-26 14:32:41 +08:00
def parse_args():
parser = argparse.ArgumentParser(description='connect to results station')
2025-02-26 14:42:28 +08:00
parser.add_argument('-sp',
'--station-path',
type=str,
default=None,
help='if no env path, use this.')
parser.add_argument('-p',
'--my-path',
type=str,
default=None,
help='your operation path.')
parser.add_argument(
'-op',
'--operation',
type=str,
default='d',
help='u:update, d:download, ls: show dataset and model options')
parser.add_argument('-d',
'--dataset',
type=str,
default='mmlu_pro',
help='target dataset name')
parser.add_argument('-m',
'--model',
type=str,
default='deepseek-v2_5-turbomind',
help='target model name')
# parser.add_argument('-all',
# '--all-transfer',
# action='store_true',
# default=False,
# help='transfer all files under the path')
2025-02-26 14:32:41 +08:00
args = parser.parse_args()
return args
def read_json(path):
results = []
for i in path:
with open(i, 'r') as f:
results.append(json.load(f))
f.close()
return results
def load_json_files_by_prefix(prefix, target_path):
if prefix in data_file_map.keys():
prefix = data_file_map[prefix]
result_dict = {}
for filename in os.listdir(target_path):
2025-02-26 14:42:28 +08:00
if filename.startswith(prefix) and filename.endswith('.json'):
2025-02-26 14:32:41 +08:00
file_path = os.path.join(target_path, filename)
2025-02-26 14:42:28 +08:00
with open(file_path, 'r', encoding='utf-8') as file:
2025-02-26 14:32:41 +08:00
json_data = json.load(file)
result_dict[os.path.splitext(filename)[0]] = json_data
return result_dict
def main(path, mypath, args):
if args.dataset not in data_searchable_list:
raise ValueError('invalid dataset input!')
2025-02-26 14:42:28 +08:00
update_path = path + args.dataset if path[
-1] == '/' else path + '/' + args.dataset
2025-02-26 14:32:41 +08:00
update_filename = args.dataset + '_' + args.model + '.json'
update_goal = update_path + '/' + update_filename
# update from your path to result station
if args.operation == 'u':
2025-02-26 14:42:28 +08:00
mypath_prediction = (mypath + 'predictions/' +
args.model) if mypath[-1] == '/' else (
mypath + '/predictions/' + args.model)
mypath_result = (mypath + 'results/' +
args.model) if mypath[-1] == '/' else (mypath +
'/results/' +
args.model)
2025-02-26 14:32:41 +08:00
if os.path.exists(mypath_prediction) and os.path.exists(mypath_result):
2025-02-26 14:42:28 +08:00
result_dict = load_json_files_by_prefix(args.dataset,
mypath_result)
2025-02-26 14:32:41 +08:00
prediction_list = []
for i in result_dict.keys():
2025-02-26 14:42:28 +08:00
prediction_dict = load_json_files_by_prefix(
i, mypath_prediction)
2025-02-26 14:32:41 +08:00
for j in range(len(prediction_dict)):
for k in prediction_dict[i + '_' + str(j)].keys():
2025-02-26 14:42:28 +08:00
prediction_list.append({
'prediction':
prediction_dict[i + '_' + str(j)][k],
'sub_category':
i
})
2025-02-26 14:32:41 +08:00
update_dict = {
'predictions': prediction_list,
'results': result_dict,
}
if not os.path.exists(update_path):
os.makedirs(update_path)
if os.path.exists(update_goal):
2025-02-26 14:42:28 +08:00
input('This result exists! Press any key to continue...')
with open(update_goal, 'w', encoding='utf-8') as f:
2025-02-26 14:32:41 +08:00
json.dump(update_dict, f, ensure_ascii=False, indent=4)
f.close()
# read from result station to your path
if args.operation == 'd':
if not os.path.exists(update_goal):
raise ValueError('This result does not exist!')
2025-02-26 14:42:28 +08:00
with open(update_goal, 'r', encoding='utf-8') as f:
2025-02-26 14:32:41 +08:00
results = json.load(f)
f.close()
legal_key_set = {'predictions', 'results'}
2025-02-26 14:42:28 +08:00
if set(results.keys()) == legal_key_set and isinstance(
results['predictions'], list) and isinstance(
results['results'], dict):
print('Successfully download result from station!'
"you've got a dict with format as follows:"
"\n content['precitions', 'results']")
2025-02-26 14:32:41 +08:00
else:
raise ValueError('illegal format of the result!')
2025-02-26 14:42:28 +08:00
save_path = args.my_path if args.my_path[
-1] == '/' else args.my_path + '/'
2025-02-26 14:32:41 +08:00
save_path += args.dataset + '/'
if not os.path.exists(save_path):
os.makedirs(save_path)
2025-02-26 14:42:28 +08:00
with open(save_path + update_filename, 'w', encoding='utf-8') as f:
2025-02-26 14:32:41 +08:00
json.dump(results, f, ensure_ascii=False, indent=4)
f.close()
if __name__ == '__main__':
args = parse_args()
if args.operation == 'ls':
2025-02-26 14:42:28 +08:00
print('----DATASET LIST----')
2025-02-26 14:32:41 +08:00
print(data_searchable_list)
2025-02-26 14:42:28 +08:00
print('----MODEL LIST----')
2025-02-26 14:32:41 +08:00
else:
if RESULTS_STATION_PATH is not None:
path = RESULTS_STATION_PATH
else:
path = args.station_path
if path is None:
raise ValueError('Please appoint the path of results station!')
if not os.path.exists(path):
raise ValueError('Not a valid path of results station!')
mypath = args.my_path
if mypath is None:
raise ValueError('Please appoint your own path!')
if not os.path.exists(mypath):
raise ValueError('Not a valid path of your own path!')
main(path, mypath, args)