2023-07-04 21:34:55 +08:00
|
|
|
import csv
|
2024-01-08 15:51:48 +08:00
|
|
|
import json
|
2023-07-04 21:34:55 +08:00
|
|
|
import os.path as osp
|
|
|
|
|
|
|
|
from datasets import Dataset, DatasetDict
|
|
|
|
|
|
|
|
from opencompass.registry import LOAD_DATASET
|
|
|
|
|
|
|
|
from .base import BaseDataset
|
|
|
|
|
|
|
|
|
|
|
|
@LOAD_DATASET.register_module()
|
|
|
|
class MMLUDataset(BaseDataset):
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def load(path: str, name: str):
|
|
|
|
dataset = DatasetDict()
|
|
|
|
for split in ['dev', 'test']:
|
|
|
|
raw_data = []
|
|
|
|
filename = osp.join(path, split, f'{name}_{split}.csv')
|
2023-07-17 14:26:30 +08:00
|
|
|
with open(filename, encoding='utf-8') as f:
|
2023-07-04 21:34:55 +08:00
|
|
|
reader = csv.reader(f)
|
|
|
|
for row in reader:
|
|
|
|
assert len(row) == 6
|
|
|
|
raw_data.append({
|
|
|
|
'input': row[0],
|
|
|
|
'A': row[1],
|
|
|
|
'B': row[2],
|
|
|
|
'C': row[3],
|
|
|
|
'D': row[4],
|
|
|
|
'target': row[5],
|
|
|
|
})
|
|
|
|
dataset[split] = Dataset.from_list(raw_data)
|
|
|
|
return dataset
|
2024-01-08 15:51:48 +08:00
|
|
|
|
|
|
|
|
|
|
|
class MMLUDatasetClean(BaseDataset):
|
|
|
|
|
|
|
|
# load the contamination annotations of CEval from
|
|
|
|
# https://github.com/liyucheng09/Contamination_Detector
|
|
|
|
@staticmethod
|
|
|
|
def load_contamination_annotations(path, split='val'):
|
|
|
|
import requests
|
|
|
|
|
|
|
|
assert split == 'test', 'We only use test set for MMLU'
|
|
|
|
annotation_cache_path = osp.join(
|
|
|
|
path, split, f'MMLU_{split}_contamination_annotations.json')
|
|
|
|
if osp.exists(annotation_cache_path):
|
|
|
|
with open(annotation_cache_path, 'r') as f:
|
|
|
|
annotations = json.load(f)
|
|
|
|
return annotations
|
|
|
|
link_of_annotations = 'https://github.com/liyucheng09/Contamination_Detector/releases/download/v0.1.1rc2/mmlu_annotations.json' # noqa
|
|
|
|
annotations = json.loads(requests.get(link_of_annotations).text)
|
|
|
|
with open(annotation_cache_path, 'w') as f:
|
|
|
|
json.dump(annotations, f)
|
|
|
|
return annotations
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def load(path: str, name: str):
|
|
|
|
dataset = DatasetDict()
|
|
|
|
for split in ['dev', 'test']:
|
|
|
|
raw_data = []
|
|
|
|
filename = osp.join(path, split, f'{name}_{split}.csv')
|
|
|
|
if split == 'test':
|
|
|
|
annotations = MMLUDatasetClean.load_contamination_annotations(
|
|
|
|
path, split)
|
|
|
|
with open(filename, encoding='utf-8') as f:
|
|
|
|
reader = csv.reader(f)
|
|
|
|
for row_index, row in enumerate(reader):
|
|
|
|
assert len(row) == 6
|
|
|
|
item = {
|
|
|
|
'input': row[0],
|
|
|
|
'A': row[1],
|
|
|
|
'B': row[2],
|
|
|
|
'C': row[3],
|
|
|
|
'D': row[4],
|
|
|
|
'target': row[5],
|
|
|
|
}
|
|
|
|
if split == 'test':
|
|
|
|
row_id = f'{name} {row_index}'
|
|
|
|
if row_id in annotations:
|
|
|
|
is_clean = annotations[row_id][0]
|
|
|
|
else:
|
|
|
|
is_clean = 'not labeled'
|
|
|
|
item['is_clean'] = is_clean
|
|
|
|
raw_data.append(item)
|
|
|
|
dataset[split] = Dataset.from_list(raw_data)
|
|
|
|
return dataset
|