mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
135 lines
4.9 KiB
Python
135 lines
4.9 KiB
Python
![]() |
import json
|
||
|
from concurrent.futures import ThreadPoolExecutor
|
||
|
from typing import Dict, List, Optional, Union
|
||
|
|
||
|
import requests
|
||
|
|
||
|
from opencompass.registry import MODELS
|
||
|
from opencompass.utils.logging import get_logger
|
||
|
from opencompass.utils.prompt import PromptList
|
||
|
|
||
|
from .base_api import BaseAPIModel
|
||
|
|
||
|
PromptType = Union[PromptList, str]
|
||
|
|
||
|
|
||
|
@MODELS.register_module()
|
||
|
class KrGPT(BaseAPIModel):
|
||
|
is_api: bool = True
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
path: str = 'KrGPT',
|
||
|
url: str = 'http://101.69.162.5:9300/v1/chat/completions',
|
||
|
max_seq_len: int = 2048,
|
||
|
meta_template: Optional[Dict] = None,
|
||
|
retry: int = 2,
|
||
|
generation_kwargs: Optional[Dict] = dict(),
|
||
|
):
|
||
|
super().__init__(
|
||
|
path=path,
|
||
|
max_seq_len=max_seq_len,
|
||
|
meta_template=meta_template,
|
||
|
retry=retry,
|
||
|
generation_kwargs=generation_kwargs,
|
||
|
)
|
||
|
self.logger = get_logger()
|
||
|
self.url = url
|
||
|
self.generation_kwargs = generation_kwargs
|
||
|
self.max_out_len = self.generation_kwargs.get('max_new_tokens', 1024)
|
||
|
|
||
|
def generate(self, inputs: List[str], max_out_len: int,
|
||
|
**kwargs) -> List[str]:
|
||
|
"""Generate results given a list of inputs.
|
||
|
|
||
|
Args:
|
||
|
inputs (List[str]): A list of strings or PromptDicts.
|
||
|
The PromptDict should be organized in OpenCompass'
|
||
|
API format.
|
||
|
max_out_len (int): The maximum length of the output.
|
||
|
|
||
|
Returns:
|
||
|
List[str]: A list of generated strings.
|
||
|
"""
|
||
|
|
||
|
with ThreadPoolExecutor() as executor:
|
||
|
results = list(
|
||
|
executor.map(self._generate, inputs,
|
||
|
[self.max_out_len] * len(inputs)))
|
||
|
return results
|
||
|
|
||
|
def _generate(self,
|
||
|
input: PromptType,
|
||
|
max_out_len: int,
|
||
|
temperature: float = 0.0) -> str:
|
||
|
"""Generate results given a list of inputs.
|
||
|
|
||
|
Args:
|
||
|
inputs (PromptType): A string or PromptDict.
|
||
|
The PromptDict should be organized in OpenCompass'
|
||
|
API format.
|
||
|
max_out_len (int): The maximum length of the output.
|
||
|
temperature (float): What sampling temperature to use,
|
||
|
between 0 and 2. Higher values like 0.8 will make the output
|
||
|
more random, while lower values like 0.2 will make it more
|
||
|
focused and deterministic.
|
||
|
|
||
|
Returns:
|
||
|
str: The generated string.
|
||
|
"""
|
||
|
assert isinstance(input, (str, PromptList))
|
||
|
|
||
|
if isinstance(input, str):
|
||
|
messages = [{'role': 'user', 'content': input}]
|
||
|
else:
|
||
|
messages = []
|
||
|
for item in input:
|
||
|
msg = {'content': item['prompt']}
|
||
|
if item['role'] == 'HUMAN':
|
||
|
msg['role'] = 'user'
|
||
|
elif item['role'] == 'BOT':
|
||
|
msg['role'] = 'assistant'
|
||
|
elif item['role'] == 'SYSTEM':
|
||
|
msg['role'] = 'system'
|
||
|
messages.append(msg)
|
||
|
|
||
|
max_num_retries = 0
|
||
|
while max_num_retries < self.retry:
|
||
|
header = {'content-type': 'application/json'}
|
||
|
|
||
|
try:
|
||
|
data = dict(messages=messages)
|
||
|
raw_response = requests.post(self.url,
|
||
|
headers=header,
|
||
|
data=json.dumps(data))
|
||
|
except requests.ConnectionError:
|
||
|
self.logger.error('Got connection error, retrying...')
|
||
|
continue
|
||
|
try:
|
||
|
response = raw_response.json()
|
||
|
except requests.JSONDecodeError:
|
||
|
self.logger.error('JsonDecode error, got',
|
||
|
str(raw_response.content))
|
||
|
continue
|
||
|
try:
|
||
|
return response['choices'][0]['message']['content'].strip()
|
||
|
except KeyError:
|
||
|
self.logger.error('Find error message in response: ',
|
||
|
str(response))
|
||
|
# if 'error' in response:
|
||
|
# if response['error']['code'] == 'rate_limit_exceeded':
|
||
|
# time.sleep(1)
|
||
|
# continue
|
||
|
# elif response['error']['code'] == 'insufficient_quota':
|
||
|
# self.invalid_keys.add(key)
|
||
|
# self.logger.warn(f'insufficient_quota key: {key}')
|
||
|
# continue
|
||
|
|
||
|
# self.logger.error('Find error message in response: ',
|
||
|
# str(response['error']))
|
||
|
max_num_retries += 1
|
||
|
|
||
|
raise RuntimeError('Calling OpenAI failed after retrying for '
|
||
|
f'{max_num_retries} times. Check the logs for '
|
||
|
'details.')
|