OpenCompass/configs/datasets/LEvalGSM100/LEval_gsm100_gen_a4d1f8.py

44 lines
1.5 KiB
Python
Raw Normal View History

from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import EMEvaluator, RougeEvaluator, SquadEvaluator, AccEvaluator
from opencompass.datasets import LEvalGSM100Dataset
from opencompass.utils.text_postprocessors import first_capital_postprocess, first_capital_postprocess_multi
from opencompass.registry import TEXT_POSTPROCESSORS
from opencompass.datasets import gsm100_dataset_postprocess, gsm100_postprocess
LEval_gsm100_reader_cfg = dict(
input_columns=['context', 'question'],
output_column='answer',
train_split='test',
test_split='test'
)
LEval_gsm100_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(role='HUMAN', prompt='{question}\n'),
], )),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=512)
)
LEval_gsm100_eval_cfg = dict(evaluator=dict(type=AccEvaluator),
pred_postprocessor=dict(type=gsm100_postprocess),
dataset_postprocessor=dict(type=gsm100_dataset_postprocess)
)
LEval_gsm100_datasets = [
dict(
type=LEvalGSM100Dataset,
abbr='LEval_gsm100',
path='L4NLP/LEval',
name='gsm100',
reader_cfg=LEval_gsm100_reader_cfg,
infer_cfg=LEval_gsm100_infer_cfg,
eval_cfg=LEval_gsm100_eval_cfg)
]