mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
137 lines
4.8 KiB
Python
137 lines
4.8 KiB
Python
![]() |
from mmengine.config import read_base
|
||
|
|
||
|
with read_base():
|
||
|
from .datasets.subjective.alignbench.alignbench_judgeby_critiquellm import alignbench_datasets
|
||
|
from .datasets.subjective.alpaca_eval.alpacav2_judgeby_gpt4 import alpacav2_datasets
|
||
|
from .datasets.subjective.compassarena.compassarena_compare import compassarena_datasets
|
||
|
from .datasets.subjective.arena_hard.arena_hard_compare import arenahard_datasets
|
||
|
from .datasets.subjective.compassbench.compassbench_compare import compassbench_datasets
|
||
|
from .datasets.subjective.fofo.fofo_judge import fofo_datasets
|
||
|
from .datasets.subjective.multiround.mtbench_single_judge_diff_temp import mtbench_datasets
|
||
|
from .datasets.subjective.multiround.mtbench101_judge import mtbench101_datasets
|
||
|
from .models.chatglm.hf_chatglm3_6b import models
|
||
|
from opencompass.models import HuggingFaceCausalLM, HuggingFace, HuggingFaceChatGLM3, OpenAI
|
||
|
from opencompass.partitioners import NaivePartitioner, SizePartitioner
|
||
|
from opencompass.partitioners.sub_naive import SubjectiveNaivePartitioner
|
||
|
from opencompass.partitioners.sub_size import SubjectiveSizePartitioner
|
||
|
from opencompass.partitioners.sub_num_worker import SubjectiveNumWorkerPartitioner
|
||
|
from opencompass.runners import LocalRunner
|
||
|
from opencompass.runners import SlurmSequentialRunner
|
||
|
from opencompass.tasks import OpenICLInferTask
|
||
|
from opencompass.tasks.subjective_eval import SubjectiveEvalTask
|
||
|
from opencompass.summarizers import SubjectiveSummarizer
|
||
|
|
||
|
api_meta_template = dict(
|
||
|
round=[
|
||
|
dict(role='HUMAN', api_role='HUMAN'),
|
||
|
dict(role='BOT', api_role='BOT', generate=True),
|
||
|
]
|
||
|
)
|
||
|
|
||
|
# -------------Inference Stage ----------------------------------------
|
||
|
# For subjective evaluation, we often set do sample for models
|
||
|
for model in models:
|
||
|
model['generation_kwargs'] = dict(do_sample=True)
|
||
|
|
||
|
models = [
|
||
|
dict(
|
||
|
type=HuggingFaceChatGLM3,
|
||
|
abbr='chatglm3-6b-hf',
|
||
|
path='THUDM/chatglm3-6b',
|
||
|
tokenizer_path='THUDM/chatglm3-6b',
|
||
|
model_kwargs=dict(
|
||
|
device_map='auto',
|
||
|
trust_remote_code=True,
|
||
|
),
|
||
|
tokenizer_kwargs=dict(
|
||
|
padding_side='left',
|
||
|
truncation_side='left',
|
||
|
trust_remote_code=True,
|
||
|
),
|
||
|
generation_kwargs=dict(
|
||
|
do_sample=True,
|
||
|
),
|
||
|
meta_template=api_meta_template,
|
||
|
max_out_len=2048,
|
||
|
max_seq_len=4096,
|
||
|
batch_size=8,
|
||
|
run_cfg=dict(num_gpus=1, num_procs=1),
|
||
|
),dict(
|
||
|
type=HuggingFaceChatGLM3,
|
||
|
abbr='chatglm3-6b-hf2',
|
||
|
path='THUDM/chatglm3-6b',
|
||
|
tokenizer_path='THUDM/chatglm3-6b',
|
||
|
model_kwargs=dict(
|
||
|
device_map='auto',
|
||
|
trust_remote_code=True,
|
||
|
),
|
||
|
tokenizer_kwargs=dict(
|
||
|
padding_side='left',
|
||
|
truncation_side='left',
|
||
|
trust_remote_code=True,
|
||
|
),
|
||
|
generation_kwargs=dict(
|
||
|
do_sample=True,
|
||
|
),
|
||
|
meta_template=api_meta_template,
|
||
|
max_out_len=2048,
|
||
|
max_seq_len=4096,
|
||
|
batch_size=8,
|
||
|
run_cfg=dict(num_gpus=1, num_procs=1),
|
||
|
),dict(
|
||
|
type=HuggingFaceChatGLM3,
|
||
|
abbr='chatglm3-6b-hf3',
|
||
|
path='THUDM/chatglm3-6b',
|
||
|
tokenizer_path='THUDM/chatglm3-6b',
|
||
|
model_kwargs=dict(
|
||
|
device_map='auto',
|
||
|
trust_remote_code=True,
|
||
|
),
|
||
|
tokenizer_kwargs=dict(
|
||
|
padding_side='left',
|
||
|
truncation_side='left',
|
||
|
trust_remote_code=True,
|
||
|
),
|
||
|
generation_kwargs=dict(
|
||
|
do_sample=True,
|
||
|
),
|
||
|
meta_template=api_meta_template,
|
||
|
max_out_len=2048,
|
||
|
max_seq_len=4096,
|
||
|
batch_size=8,
|
||
|
run_cfg=dict(num_gpus=1, num_procs=1),
|
||
|
)
|
||
|
]
|
||
|
|
||
|
datasets = [*alignbench_datasets, *alpacav2_datasets, *arenahard_datasets, *compassarena_datasets, *compassbench_datasets, *fofo_datasets, *mtbench_datasets, *mtbench101_datasets]
|
||
|
|
||
|
infer = dict(
|
||
|
partitioner=dict(type=NaivePartitioner),
|
||
|
runner=dict(type=LocalRunner, max_num_workers=16, task=dict(type=OpenICLInferTask)),
|
||
|
)
|
||
|
# -------------Evalation Stage ----------------------------------------
|
||
|
|
||
|
## ------------- JudgeLLM Configuration
|
||
|
judge_models = [dict(
|
||
|
abbr='GPT4-Turbo',
|
||
|
type=OpenAI,
|
||
|
path='gpt-4-1106-preview',
|
||
|
key='xxxx', # The key will be obtained from $OPENAI_API_KEY, but you can write down your key here as well
|
||
|
meta_template=api_meta_template,
|
||
|
query_per_second=16,
|
||
|
max_out_len=2048,
|
||
|
max_seq_len=2048,
|
||
|
batch_size=8,
|
||
|
temperature=0,
|
||
|
)]
|
||
|
judge_models = [models[0]]
|
||
|
|
||
|
## ------------- Evaluation Configuration
|
||
|
eval = dict(
|
||
|
partitioner=dict(type=SubjectiveNaivePartitioner, models=models, judge_models=judge_models,),
|
||
|
runner=dict(type=LocalRunner, max_num_workers=16, task=dict(type=SubjectiveEvalTask)),
|
||
|
)
|
||
|
|
||
|
summarizer = dict(type=SubjectiveSummarizer, function='subjective')
|
||
|
work_dir = 'outputs/subjective/'
|