2023-07-06 12:27:41 +08:00
from opencompass . openicl . icl_prompt_template import PromptTemplate
from opencompass . openicl . icl_retriever import ZeroRetriever
from opencompass . openicl . icl_inferencer import GenInferencer
from opencompass . datasets import NaturalQuestionDataset , NQEvaluator
nq_reader_cfg = dict (
input_columns = [ ' question ' ] , output_column = ' answer ' , train_split = ' test ' )
nq_infer_cfg = dict (
prompt_template = dict (
type = PromptTemplate ,
template = dict (
round = [
dict ( role = ' HUMAN ' , prompt = ' Answer these questions, your answer should be as simple as possible, start your answer with the prompt \' The answer is \' . \n Q: {question} ? ' ) ,
dict ( role = ' BOT ' , prompt = ' A: ' ) ,
] , ) ) ,
retriever = dict ( type = ZeroRetriever ) ,
inferencer = dict ( type = GenInferencer ) )
2024-05-14 15:35:58 +08:00
nq_eval_cfg = dict ( evaluator = dict ( type = NQEvaluator ) , pred_role = ' BOT ' )
2023-07-06 12:27:41 +08:00
nq_datasets = [
dict (
type = NaturalQuestionDataset ,
abbr = ' nq ' ,
path = ' ./data/nq/ ' ,
reader_cfg = nq_reader_cfg ,
infer_cfg = nq_infer_cfg ,
eval_cfg = nq_eval_cfg )
]