OpenCompass/configs/datasets/FinanceIQ/FinanceIQ_ppl_42b9bd.py

77 lines
2.8 KiB
Python
Raw Permalink Normal View History

2023-11-16 17:47:57 +08:00
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import FixKRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import FinanceIQDataset
financeIQ_subject_mapping_en = {
2024-05-14 15:35:58 +08:00
'certified_public_accountant': '注册会计师CPA',
2023-11-16 17:47:57 +08:00
'banking_qualification': '银行从业资格',
2024-05-14 15:35:58 +08:00
'securities_qualification': '证券从业资格',
'fund_qualification': '基金从业资格',
'insurance_qualification': '保险从业资格CICE',
'economic_analyst': '经济师',
'taxation_practitioner': '税务师',
'futures_qualification': '期货从业资格',
2023-11-16 17:47:57 +08:00
'certified_fin_planner': '理财规划师',
2024-05-14 15:35:58 +08:00
'actuary_fin_math': '精算师-金融数学',
2023-11-16 17:47:57 +08:00
}
financeIQ_subject_mapping = {
2024-05-14 15:35:58 +08:00
'注册会计师CPA': '注册会计师CPA',
2023-11-16 17:47:57 +08:00
'银行从业资格': '银行从业资格',
2024-05-14 15:35:58 +08:00
'证券从业资格': '证券从业资格',
'基金从业资格': '基金从业资格',
'保险从业资格CICE': '保险从业资格CICE',
'经济师': '经济师',
'税务师': '税务师',
'期货从业资格': '期货从业资格',
2023-11-16 17:47:57 +08:00
'理财规划师': '理财规划师',
2024-05-14 15:35:58 +08:00
'精算师-金融数学': '精算师-金融数学',
2023-11-16 17:47:57 +08:00
}
financeIQ_all_sets = list(financeIQ_subject_mapping.keys())
financeIQ_datasets = []
for _name in financeIQ_all_sets:
_ch_name = financeIQ_subject_mapping[_name]
financeIQ_infer_cfg = dict(
ice_template=dict(
type=PromptTemplate,
template={
answer: dict(
2024-05-14 15:35:58 +08:00
begin='</E>',
2023-11-16 17:47:57 +08:00
round=[
dict(
2024-05-14 15:35:58 +08:00
role='HUMAN',
prompt=f'以下是关于{_ch_name}的单项选择题,请直接给出正确答案的选项。\n题目:{{question}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}'
2023-11-16 17:47:57 +08:00
),
2024-05-14 15:35:58 +08:00
dict(role='BOT', prompt=f'答案是: {answer}'),
2023-11-16 17:47:57 +08:00
])
2024-05-14 15:35:58 +08:00
for answer in ['A', 'B', 'C', 'D']
2023-11-16 17:47:57 +08:00
},
2024-05-14 15:35:58 +08:00
ice_token='</E>',
2023-11-16 17:47:57 +08:00
),
retriever=dict(type=FixKRetriever, fix_id_list=[0, 1, 2, 3, 4]),
inferencer=dict(type=PPLInferencer),
)
financeIQ_eval_cfg = dict(evaluator=dict(type=AccEvaluator))
financeIQ_datasets.append(
dict(
type=FinanceIQDataset,
2024-05-14 15:35:58 +08:00
path='./data/FinanceIQ/',
2023-11-16 17:47:57 +08:00
name=_name,
2024-05-14 15:35:58 +08:00
abbr=f'FinanceIQ-{_name}',
2023-11-16 17:47:57 +08:00
reader_cfg=dict(
2024-05-14 15:35:58 +08:00
input_columns=['question', 'A', 'B', 'C', 'D'],
output_column='answer',
train_split='dev',
2023-11-16 17:47:57 +08:00
test_split='test'),
infer_cfg=financeIQ_infer_cfg,
eval_cfg=financeIQ_eval_cfg,
))
del _name, _ch_name