OpenCompass/examples/eval_llm_compression.py

56 lines
2.1 KiB
Python
Raw Permalink Normal View History

from mmengine.config import read_base
with read_base():
# LLM compression datasets
from opencompass.configs.datasets.llm_compression.llm_compression import llm_compression_datasets
# Model configs
from opencompass.configs.models.qwen.hf_qwen1_5_7b import models as qwen1_5_7b
from opencompass.configs.models.qwen.hf_qwen1_5_14b import models as qwen1_5_14b
from opencompass.configs.models.hf_llama.hf_llama2_7b import models as llama2_7b
from opencompass.configs.models.hf_llama.hf_llama2_13b import models as llama2_13b
from opencompass.partitioners import NaivePartitioner
from opencompass.runners import LocalRunner
from opencompass.summarizers import LLMCompressionSummarizer
from opencompass.tasks import OpenICLEvalTask, OpenICLInferTask
# -------------Inference Stage ----------------------------------------
datasets = [*llm_compression_datasets]
workdir = 'outputs/llm_compression'
models = [
*qwen1_5_7b,
*qwen1_5_14b,
*llama2_7b,
*llama2_13b,
]
# Set custom batch_size and num_gpus for faster loss calculation
# Smaller batch_size should give more precise results, at the cost of worse performance
model_cfg = dict(batch_size=8, run_cfg=dict(num_gpus=4, num_procs=1))
for mdl in models:
mdl.update(model_cfg)
infer = dict(
# The OpenCompass implementation of BPC currently only supports NaivePartitioner, as the sliding window approach requires the dataset to be loaded sequentially. Using other partitioner types may produce incorrect results.
2024-05-14 15:35:58 +08:00
partitioner=dict(type=NaivePartitioner),
runner=dict(
type=LocalRunner,
task=dict(type=OpenICLInferTask),
max_num_workers=256, # Maximum concurrent evaluation task count
),
)
# -------------Evaluation Stage ----------------------------------------
eval = dict(partitioner=dict(type=NaivePartitioner),
runner=dict(
type=LocalRunner,
task=dict(type=OpenICLEvalTask),
max_num_workers=256,
))
# -------------Summarization Stage ----------------------------------------
summarizer = dict(type=LLMCompressionSummarizer)