OpenCompass/examples/eval_lightllm.py

53 lines
1.5 KiB
Python
Raw Permalink Normal View History

from mmengine.config import read_base
from opencompass.models import LightllmAPI
from opencompass.partitioners import NaivePartitioner
from opencompass.runners import LocalRunner
from opencompass.tasks import OpenICLInferTask
with read_base():
from opencompass.configs.datasets.humaneval.deprecated_humaneval_gen_a82cae import \
humaneval_datasets
from opencompass.configs.summarizers.leaderboard import summarizer
datasets = [*humaneval_datasets]
'''
# Prompt template for InternLM2-Chat
# https://github.com/InternLM/InternLM/blob/main/chat/chat_format.md
_meta_template = dict(
begin='<|im_start|>system\nYou are InternLM2-Chat, a harmless AI assistant<|im_end|>\n',
round=[
dict(role='HUMAN', begin='<|im_start|>user\n', end='<|im_end|>\n'),
dict(role='BOT', begin='<|im_start|>assistant\n', end='<|im_end|>\n', generate=True),
]
)
'''
_meta_template = None
models = [
dict(
abbr='LightllmAPI',
type=LightllmAPI,
url='http://localhost:1030/generate',
meta_template=_meta_template,
batch_size=32,
2024-04-30 22:09:22 +08:00
max_workers_per_task=128,
rate_per_worker=1024,
retry=4,
generation_kwargs=dict(do_sample=False,
ignore_eos=False,
max_new_tokens=1024),
),
]
infer = dict(
partitioner=dict(type=NaivePartitioner),
runner=dict(
type=LocalRunner,
max_num_workers=32,
task=dict(type=OpenICLInferTask),
),
)