OpenCompass/examples/eval_internlm_chat_turbomind.py

97 lines
3.6 KiB
Python
Raw Permalink Normal View History

from mmengine.config import read_base
from opencompass.models.turbomind import TurboMindModel
with read_base():
# choose a list of datasets
from opencompass.configs.datasets.ceval.ceval_gen_5f30c7 import \
ceval_datasets
from opencompass.configs.datasets.crowspairs.crowspairs_gen_381af0 import \
crowspairs_datasets
from opencompass.configs.datasets.gsm8k.gsm8k_gen_1d7fe4 import \
gsm8k_datasets
from opencompass.configs.datasets.mmlu.mmlu_gen_a484b3 import mmlu_datasets
from opencompass.configs.datasets.race.race_gen_69ee4f import race_datasets
from opencompass.configs.datasets.SuperGLUE_WiC.SuperGLUE_WiC_gen_d06864 import \
WiC_datasets
from opencompass.configs.datasets.SuperGLUE_WSC.SuperGLUE_WSC_gen_7902a7 import \
WSC_datasets
from opencompass.configs.datasets.triviaqa.triviaqa_gen_2121ce import \
triviaqa_datasets
# and output the results in a choosen format
from opencompass.configs.summarizers.medium import summarizer
datasets = sum((v for k, v in locals().items() if k.endswith('_datasets')), [])
internlm_meta_template = dict(round=[
dict(role='HUMAN', begin='<|User|>:', end='\n'),
dict(role='BOT', begin='<|Bot|>:', end='<eoa>\n', generate=True),
],
eos_token_id=103028)
internlm2_meta_template = dict(round=[
dict(role='HUMAN', begin='<|im_start|>user\n', end='<|im_end|>\n'),
dict(role='BOT',
begin='<|im_start|>assistant\n',
end='<|im_end|>\n',
generate=True),
],
eos_token_id=92542)
# config for internlm-chat-7b
internlm_chat_7b = dict(
type=TurboMindModel,
abbr='internlm-chat-7b-turbomind',
path='internlm/internlm-chat-7b',
engine_config=dict(session_len=2048,
max_batch_size=32,
rope_scaling_factor=1.0),
gen_config=dict(top_k=1, top_p=0.8, temperature=1.0, max_new_tokens=100),
max_out_len=100,
max_seq_len=2048,
batch_size=32,
concurrency=32,
meta_template=internlm_meta_template,
run_cfg=dict(num_gpus=1, num_procs=1),
end_str='<eoa>',
)
# config for internlm-chat-7b
internlm2_chat_7b = dict(type=TurboMindModel,
abbr='internlm2-chat-7b-turbomind',
path='internlm/internlm2-chat-7b',
engine_config=dict(session_len=2048,
max_batch_size=32,
rope_scaling_factor=1.0),
gen_config=dict(top_k=1,
top_p=0.8,
temperature=1.0,
max_new_tokens=100),
max_out_len=100,
max_seq_len=2048,
batch_size=32,
concurrency=32,
meta_template=internlm2_meta_template,
run_cfg=dict(num_gpus=1, num_procs=1),
end_str='<|im_end|>')
# config for internlm-chat-20b
internlm_chat_20b = dict(
type=TurboMindModel,
abbr='internlm-chat-20b-turbomind',
path='internlm/internlm-chat-20b',
engine_config=dict(session_len=2048,
max_batch_size=8,
rope_scaling_factor=1.0),
gen_config=dict(top_k=1, top_p=0.8, temperature=1.0, max_new_tokens=100),
max_out_len=100,
max_seq_len=2048,
batch_size=8,
concurrency=8,
meta_template=internlm_meta_template,
run_cfg=dict(num_gpus=1, num_procs=1),
end_str='<eoa>',
)
models = [internlm_chat_20b]