OSS_HaiRuo/vllm_modeling_hairuo.py

450 lines
17 KiB
Python
Raw Permalink Normal View History

2025-01-14 17:47:08 +08:00
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import math
from typing import Any
from typing import Dict
from typing import Iterable
from typing import List
from typing import Optional
from typing import Tuple
from typing import Union
import torch
from torch import nn
from transformers import PretrainedConfig
from vllm.attention import Attention
from vllm.attention import AttentionMetadata
from vllm.config import CacheConfig
from vllm.config import VllmConfig
from vllm.distributed import get_pp_group
from vllm.distributed import get_tensor_model_parallel_world_size
from vllm.model_executor import SamplingMetadata
from vllm.model_executor.layers.activation import SiluAndMul
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.linear import MergedColumnParallelLinear
from vllm.model_executor.layers.linear import QKVParallelLinear
from vllm.model_executor.layers.linear import RowParallelLinear
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.sampler import Sampler
from vllm.model_executor.layers.sampler import SamplerOutput
from vllm.model_executor.layers.vocab_parallel_embedding import DEFAULT_VOCAB_PADDING_SIZE
from vllm.model_executor.layers.vocab_parallel_embedding import ParallelLMHead
from vllm.model_executor.layers.vocab_parallel_embedding import VocabParallelEmbedding
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.model_executor.model_loader.weight_utils import maybe_remap_kv_scale_name
from vllm.model_executor.models import SupportsLoRA
from vllm.model_executor.models import SupportsPP
from vllm.model_executor.models.utils import AutoWeightsLoader
from vllm.model_executor.models.utils import is_pp_missing_parameter
from vllm.model_executor.models.utils import make_empty_intermediate_tensors_factory
from vllm.model_executor.models.utils import make_layers
from vllm.model_executor.models.utils import maybe_prefix
from vllm.sequence import IntermediateTensors
class HairuoMLP(nn.Module):
def __init__(
self,
hidden_size,
intermediate_size: int,
hidden_act: str,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
):
super().__init__()
self.gate_up_proj = MergedColumnParallelLinear(
hidden_size, [intermediate_size] * 2, bias=False, quant_config=quant_config, prefix=f"{prefix}.gate_up_proj"
)
self.down_proj = RowParallelLinear(
intermediate_size, hidden_size, bias=False, quant_config=quant_config, prefix=f"{prefix}.down_proj"
)
if hidden_act != "silu":
raise ValueError(f"Unsupported activation: {hidden_act}. " "Only silu is supported for now.")
self.act_fn = SiluAndMul()
def forward(self, x):
gate_up, _ = self.gate_up_proj(x)
x = self.act_fn(gate_up)
x, _ = self.down_proj(x)
return x
class HairuoAttention(nn.Module):
def __init__(
self,
hidden_size: int,
num_heads: int,
num_kv_heads: int,
rope_theta: float = 10000,
rope_scaling: Optional[Dict[str, Any]] = None,
max_position_embeddings: int = 8192,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
):
super().__init__()
self.hidden_size = hidden_size
tp_size = get_tensor_model_parallel_world_size()
self.total_num_heads = num_heads
assert self.total_num_heads % tp_size == 0
self.num_heads = self.total_num_heads // tp_size
self.total_num_kv_heads = num_kv_heads
if self.total_num_kv_heads >= tp_size:
assert self.total_num_kv_heads % tp_size == 0
else:
assert tp_size % self.total_num_kv_heads == 0
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
self.head_dim = hidden_size // self.total_num_heads
self.q_size = self.num_heads * self.head_dim
self.kv_size = self.num_kv_heads * self.head_dim
self.scaling = self.head_dim**-0.5
self.rope_theta = rope_theta
self.max_position_embeddings = max_position_embeddings
self.qkv_proj = QKVParallelLinear(
hidden_size=hidden_size,
head_size=self.head_dim,
total_num_heads=self.total_num_heads,
total_num_kv_heads=self.total_num_kv_heads,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.qkv_proj",
)
self.o_proj = RowParallelLinear(
input_size=self.total_num_heads * self.head_dim,
output_size=hidden_size,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.o_proj",
)
self.rotary_emb = get_rope(
self.head_dim,
rotary_dim=self.head_dim,
max_position=max_position_embeddings,
base=rope_theta,
rope_scaling=rope_scaling,
)
self.attn = Attention(
self.num_heads,
self.head_dim,
self.scaling,
num_kv_heads=self.num_kv_heads,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.attn",
)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: torch.Tensor,
attn_metadata: AttentionMetadata,
) -> torch.Tensor:
qkv, _ = self.qkv_proj(hidden_states)
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
o_dtype = q.dtype
q, k = self.rotary_emb(positions, q.float(), k.float())
q, k = q.to(o_dtype), k.to(o_dtype)
attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
output, _ = self.o_proj(attn_output)
return output
class HairuoDecoderLayer(nn.Module):
def __init__(
self,
config: PretrainedConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
):
super().__init__()
self.config = config
self.cache_config = cache_config
self.quant_config = quant_config
self.hidden_size = config.hidden_size
self.rope_theta = getattr(config, "rope_theta", 10000.0)
self.rope_scaling = getattr(config, "rope_scaling", None)
if self.rope_scaling is not None and getattr(config, "original_max_position_embeddings", None):
self.rope_scaling["original_max_position_embeddings"] = config.original_max_position_embeddings
max_position_embeddings = getattr(config, "max_position_embeddings", 8192)
self.self_attn = HairuoAttention(
hidden_size=self.hidden_size,
num_heads=config.num_attention_heads,
num_kv_heads=getattr(config, "num_key_value_heads", config.num_attention_heads),
rope_theta=self.rope_theta,
rope_scaling=self.rope_scaling,
max_position_embeddings=max_position_embeddings,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.self_attn",
)
self.mlp = HairuoMLP(
hidden_size=self.hidden_size,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act,
quant_config=quant_config,
prefix=f"{prefix}.mlp",
)
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.mup_scale_hidden_states = config.mup_scale_depth / math.sqrt(config.num_hidden_layers)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: torch.Tensor,
attn_metadata: AttentionMetadata,
residual: Optional[torch.Tensor],
) -> Tuple[torch.Tensor, torch.Tensor]:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
hidden_states = self.self_attn(
positions=positions, hidden_states=hidden_states, kv_cache=kv_cache, attn_metadata=attn_metadata
)
hidden_states = residual + hidden_states * self.mup_scale_hidden_states
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states * self.mup_scale_hidden_states
return hidden_states, None
class HairuoModel(nn.Module):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = "") -> None:
super().__init__()
config = vllm_config.model_config.hf_config
cache_config = vllm_config.cache_config
quant_config = vllm_config.quant_config
lora_config = vllm_config.lora_config
self.config = config
self.padding_idx = config.pad_token_id
lora_vocab = (lora_config.lora_extra_vocab_size * (lora_config.max_loras or 1)) if lora_config else 0
self.vocab_size = config.vocab_size + lora_vocab
self.org_vocab_size = config.vocab_size
self.embed_tokens = VocabParallelEmbedding(
self.vocab_size,
config.hidden_size,
org_num_embeddings=config.vocab_size,
prefix=f"{prefix}.embed_tokens",
)
self.start_layer, self.end_layer, self.layers = make_layers(
config.num_hidden_layers,
lambda prefix: HairuoDecoderLayer(
config=config, cache_config=cache_config, quant_config=quant_config, prefix=f"{prefix}.layers"
),
prefix=f"{prefix}.layers",
)
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.make_empty_intermediate_tensors = make_empty_intermediate_tensors_factory(
["hidden_states", "residual"], config.hidden_size
)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
embedding = self.embed_tokens(input_ids)
return embedding * self.config.mup_scale_emb
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
if get_pp_group().is_first_rank:
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
hidden_states = self.get_input_embeddings(input_ids)
residual = None
else:
hidden_states = intermediate_tensors["hidden_states"]
residual = intermediate_tensors["residual"]
for i in range(self.start_layer, self.end_layer):
layer = self.layers[i]
hidden_states, residual = layer(
positions,
hidden_states,
kv_caches[i - self.start_layer],
attn_metadata,
residual,
)
if not get_pp_group().is_last_rank:
return IntermediateTensors({"hidden_states": hidden_states, "residual": residual})
hidden_states = self.norm(hidden_states)
return hidden_states
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("qkv_proj", "q_proj", "q"),
("qkv_proj", "k_proj", "k"),
("qkv_proj", "v_proj", "v"),
("gate_up_proj", "gate_proj", 0),
("gate_up_proj", "up_proj", 1),
]
params_dict = dict(self.named_parameters(remove_duplicate=False))
for name, loaded_weight in weights:
if "rotary_emb.inv_freq" in name:
continue
if "rotary_emb.cos_cached" in name or "rotary_emb.sin_cached" in name:
# Models trained using ColossalAI may include these tensors in
# the checkpoint. Skip them.
continue
for param_name, weight_name, shard_id in stacked_params_mapping:
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
if is_pp_missing_parameter(name, self):
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
# Remapping the name of FP8 kv-scale.
name = maybe_remap_kv_scale_name(name, params_dict)
if name is None:
continue
if is_pp_missing_parameter(name, self):
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader", default_weight_loader)
weight_loader(param, loaded_weight)
class HairuoForCausalLM(nn.Module, SupportsLoRA, SupportsPP):
packed_modules_mapping = {
"qkv_proj": [
"q_proj",
"k_proj",
"v_proj",
],
"gate_up_proj": [
"gate_proj",
"up_proj",
],
}
# LoRA specific attributes
supported_lora_modules = [
"qkv_proj",
"o_proj",
"gate_up_proj",
"down_proj",
"embed_tokens",
"lm_head",
]
embedding_modules = {
"embed_tokens": "input_embeddings",
"lm_head": "output_embeddings",
}
embedding_padding_modules = ["lm_head"]
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
quant_config = vllm_config.quant_config
lora_config = vllm_config.lora_config
self.config = config
self.model = HairuoModel(vllm_config=vllm_config, prefix=maybe_prefix(prefix, "model"))
unpadded_vocab_size = config.vocab_size
if lora_config:
unpadded_vocab_size += lora_config.lora_extra_vocab_size
self.lm_head = ParallelLMHead(
unpadded_vocab_size,
config.hidden_size,
org_num_embeddings=config.vocab_size,
padding_size=(
DEFAULT_VOCAB_PADDING_SIZE
# We need bigger padding if using lora for kernel
# compatibility
if not lora_config
else lora_config.lora_vocab_padding_size
),
quant_config=quant_config,
prefix=maybe_prefix(prefix, "lm_head"),
)
self.logits_processor = LogitsProcessor(unpadded_vocab_size, config.vocab_size)
self.sampler = Sampler()
self.make_empty_intermediate_tensors = self.model.make_empty_intermediate_tensors
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.model.get_input_embeddings(input_ids)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
hidden_states = self.model(input_ids, positions, kv_caches, attn_metadata, intermediate_tensors)
return hidden_states
def compute_logits(
self,
hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[torch.Tensor]:
hidden_states = hidden_states / self.config.mup_scale_width
logits = self.logits_processor(self.lm_head, hidden_states, sampling_metadata)
return logits
def sample(
self,
logits: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[SamplerOutput]:
next_tokens = self.sampler(logits, sampling_metadata)
return next_tokens
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
loader = AutoWeightsLoader(
self,
skip_prefixes=(["lm_head."] if self.config.tie_word_embeddings else None),
)
loader.load_weights(weights)